Interdisziplinäres Zentrum für Materialwissenschaften
  Publications [search]   
Organization
Activities
Contact
Offers for students
Departments
Martin-Luther-University
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Phone: +49 345 55 28471
Telefax:+49 345 55 27390 e-mail: info@cmat.uni-halle.de
[Papers] [Theses] [Reports] [Posters]
Abstracts

J. Schreiber, L. H?ring, H. Uniewski, S. Hildebrandt, H. S. Leipner
Recognition and distribution of A(g) and B(g) dislocations in indentation zones on {111} and {110} surfaces of CdTe
phys. stat. sol. (a) 171 (1999), 89-97

The distributions of polar dislocations appearing in surface and volume deformation zones of indentations on {111}Cd, {-1-1-1}Te and {110} surfaces of CdTe bulk crystals are studied. Distinct CL contrast properties proved in CdTe for A(g)- and B(g)-type dislocations are utilised to recognise Cd(g) and Te(g) dislocation segments in the deformation-induced defect configurations. The microscopic spatial glide geometries as caused by indenting the low-indexed surfaces are theoretically developed within the framework of an advanced <110> glide prism model. Comprehensive results gained by means of depth-resolved CL microscopy fully confirm the concept of 3D glide prism formation. The experimental findings give evidence for a coexistence of Cd(g) and Te(g) dislocations in tangential as well as tetrahedral deformation zones. From that, correlated propagation of polar dislocation segments during plastic flow has to be concluded.
© Wiley-VCH

Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.