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Overview

➢ Positron techniques

➢ Point defect generation during plastic deformation

➢ What we can learn from positron annihilation about defect structures?

➢ Calculations of vacancy clusters

➢ Low temperature – high temperature deformation

➢ Modell of point defect generation

➢ Implantation-induced defects
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➢ Positrons may be captured during their diffusion in lattice defects.
➢ Annihilation rate (reciprocal lifetime) depends on the local electron 

concentration at the annihilation site.

Positron annihilation

Source Thermalization

Diffusion

Capture in a vacancy





e+
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Positron annihilation techniques
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Decomposition of the experimental 
positron lifetime spectra

➢Undeformed Czochralski Si: 

one component, τb = 218 ps

➢Plastically deformed Si: 

(3 %, 1050 K)

three components

τ1 = 120 ps (not shown),

τ2 = 320 ps, τ3 = 520 ps


3
 = 520 ps


b
 = 218 ps

Positron lifetime spectrum
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Trapping model

➢ Quantitative analysis of 
positron trapping by a set of 
rate equations

➢ Solution (lifetime spectrum):

Trapping rate: di = µCdi

Average positron lifetime: τ=∑
i
I i τi

∑
i

I i
τi
exp− tτi 

Trapping

Defect

Positron source

Thermalization

Annihilation
b


d


d

Defect-free bulk

Annihilation radiation
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d
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2
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Positron capture in defects

  open volume  ≈ b

Positron potential V+(r) of a neutral and a negatively charged vacancy. The potential 
of a negatively charged acceptor  acting as a shallow positron trap is shown on the 
right. λ  is the annihilation rate (inverse positron lifetime). The trapping rate κ  is 
constant for neutral defects and a function of temperature for charged defects.
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Point defect density as a function 
of deformation conditions (i)

Density of vacancies and antisite defects
as a function of the strain. Result of 
measurements by positron annihilation in 
plastically deformed GaAs. Uniaxial 
compression in [110] direction at 773 K, 
strain rate 1×10−3 s−1.
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Total number of vacancies in the bulk (), 
vacancies bound to dislocations (), 
as well as number of Ga

As
 antisites () 

in plastically deformed GaAs. 
Deformation temperature 773 K, strain 3 %, 
strain rate 7.5×105 s1 (above),  
3×104 s1 (below).

Point defect density as a function 
of deformation conditions (ii)
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Positron lifetimes and capture rates
in deformed GaAs

Lifetime components:

➢  2 = d3 = (260 ± 5) ps

corresponds to a defect with the 
open volume of a monovacancy

➢  3 = d2 = (477 ± 20) ps

corresponds to a defect with a 
large open volume (vacancy 
cluster)

➢At low sample temperatures, 
another positron trap without 
open volume becomes active 
(e. g. antisite defects).
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Plastic deformation of silicon

Sample temperature (K)

Deformation at 1073 K
Deformation at 1173 K
Deformation at 1273 K
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Average positron lifetime a a function of the sample temperature in lightly P-doped 
FZ Si deformed in [110] direction. 7 % deformation, 2.1×10−5 s−1 strain rate.
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Comparison of high 
and low deformation temperatures

Positron lifetime as a function of 
the sample temperature in P-doped 
Si deformed at room temperature in 
comparison to high-temperature 
deformation
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Thermal stability of deformation-induced defects

T
def

 = 800 °C T
def

 = 20 °C

d2 = 540 ps 460 ps (as deformed)
– 530 ps (after annealing)

d3 = 280 ps – (as deformed)
280 ps – (after annealing)
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Dissociated dislocation in the diamond structure

Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° partial 
dislocation. There is an intrinsic stacking fault between the two partials. The drawing is 
along the (110) plane.

[111]

-
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Vacancy incorporation in dislocations

SF

[111]
Incorporation of a vacancy in the core 
of a 30° partial dislocation as a local 
transition from glide to shuffle set. 
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Dislocations as positron traps

V

x

y

+

┴

Positron potential V+(x,y) of a dislocation. The regular dislocation line 
is a shallow positron trap, while a bound vacancy acts as a deep trap.
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Trapping model in deformed crystals

(i = 1/i)
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Calculation of vacancy clusters

➢Construction of vacancy clusters and 
relaxation with a self-consistent charge-
density-functional-based tight binding (SCC 
DFTB) method [Elstner et al. 1998]
➢Method allows the modeling of large 

supercells (512 atoms), which are needed to 
avoid defect–defect interactions.
➢Different vacancy aggregates were examined 

in respect of their stability.
➢Construction scheme of closed structures 

with hexagonal rings of vacancies gives 
clusters of lowest total energy

Vacancy cluster in Si before and after relaxation
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Calculation of vacancy clusters
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Energy gained by adding a 

monovacancy to an aggregate of 

n – 1 vacancies in Si (upper part) 

and the corresponding positron 

lifetime (lower part).
[Staab et al. 1999]

3D vacancy cluster

Vacancy chain
P

o
si

tr
o

n
 li

fe
tim

e 
(p

s)D
is

so
ci

a
tio

n
 e

n
er

g
y 

(e
V

)



hsl – Poitiers 2003-7-4 21CMAT

Results of calculations

➢Especially stable structures (n < 18): V12 in GaAs 
V6, V10, V14 in Si

➢Vacancy chains are not energetically favored structures
➢The experimentally observed long-lived positron lifetime 

component may be attributed to V12 in GaAs and to V14 in Si.

➢Magic numbers in silicon n = 4i + 2, i = 1, 2, 3, …
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Formation of vacancy clusters

Agglomeration of vacancies as a result of jog dragging at 
screw dislocations

Number of point defects
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Superjogs

Formation of edge dipoles and prismatic dislocation loops

b

b

Jogs
Screw

TEM

Edge
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Vacancies and interstitials

b

Vacancies Interstitials

Secondary reactions lead to antisites:

IGa + VAs  GaAs IAs + VGa  AsGa
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Room temperature deformation of Si

➢No evidence of dislocations acting as shallow positron traps
→ low average dislocation density due to inhomogeneous 
deformation or due to other dislocation character ?
➢Large thermally stable vacancy clusters

→ formation by a jog dragging or cross slip mechanism ?

200 nm(111)

[110]
[132]− −

−

Perfect shuffle set dislocations 
nucleated during plastic deformation 
of Si under conditions of very high 
stress and low temperatures

[Rabier et al. 2002]

TEM
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Summary

 The formation of point defects during plastic deformation of 
semiconductors can be related to dislocation motion.

 The basic mechanism is the emission of vacancies and 
interstitials by screw dislocations containing jogs.

 Formation of long rows of vacancies is energetically 
unfavorable.

 Stable three-dimensional vacancy agglomerates are formed in 
a primary process by atomic re-arrangement directly at the 
climbing jog.

 Dislocations are combined positron traps with the regular 
dislocation line representing a shallow positron trap and 
bound vacancies as deep traps.
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Doppler-broadening spectroscopy

➢ Momentum conservation during annihilation 

→ Doppler shift of the annihilation energy:    ΔE = pzc/2

➢ Doppler spectrum consists of 106 events 

→ Doppler-broadening of the annihilation line
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Line-shape parameters
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Open-volume defects

➢S parameter 
➢W parameter 

Different sensitivity
➢S parameter – valence 

electron annihilation

→ open volume
➢W parameter – core 

electron annihilation

→ chemical environment 



hsl – Poitiers 2003-7-4 29CMAT

Monoenergetic positrons

Positron energy (eV)

β+ emission spectrum of 22Na
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The broad emission positron emission spectrum of a radioactive source (mean 

e+ penetration depth in silicon of 50 µm) can be moderated in a tungsten foil.
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Gettering centers in self-implanted Si

➢After high-energy (3.5 MeV) self-

implantation of Si (5×1015 cm−2) 

and RTA annealing (900 °C, 30 s) 

two gettering zones appear at Rp 

and Rp/2

(Rp projected range of Si+)

➢Visible by secondary ion mass 

spectrometry profiling after 

intentional Cu contamination
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Positron lifetime microscopy
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➢ At Rp/2, d = 450 ps 

(vacancy clusters, V
14

)

➢ At Rp, d = 320 ps 

(divacancy-type defect, 

related to dislocation 

loops)

Defect profile using the Munich 

positron lifetime microscope
[Krause-Rehberg et al. 2001]
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Variable-energy positron beam

e+ source E×B filter Collimator Accelerator Sample

0...50 kV

B

Magnetic
guidance field

Moderator

➢ Penetration depth in the sample: 0...5 µm
➢ Spot diameter: 5 mm
➢ Time per single Doppler broadening measurement: 20 min
➢ Time per depth scan: 8 h
➢ No lifetime measurements possible without bunching
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Defect profiling

Scan direction

Positron microbeam
8 keV

Lateral resolution
1 ... 2 µm

Scan width
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