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Overview

➢ Positron techniques

➢ Point defect generation during plastic deformation

➢ What we can learn from positron annihilation about defect structures?

➢ Calculations of vacancy clusters

➢ Low temperature – high temperature deformation

➢ Modell of point defect generation

➢ Implantation-induced defects
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➢ Positrons may be captured during their diffusion in lattice defects.
➢ Annihilation rate (reciprocal lifetime) depends on the local electron 

concentration at the annihilation site.

Positron annihilation

Source Thermalization

Diffusion

Capture in a vacancy
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e+
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Positron annihilation techniques

Birth -ray
E

b
 = 1.28 MeV

Annihilation -rays
E

+
 = 0.511 MeV

Angular correlation
 = p

z
/mc

Doppler broadening
E

+
 = 0.511 MeV ± ∆E

Positron lifetime

∆t 

e+ source

22Na Diffusion
L

+
 ≈ 100 nm

Thermalization
t
+
 ≈ 10─12 s

Sample
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Decomposition of the experimental 
positron lifetime spectra

➢Undeformed Czochralski Si: 

one component, τb = 218 ps

➢Plastically deformed Si: 

(3 %, 1050 K)

three components

τ1 = 120 ps (not shown),

τ2 = 320 ps, τ3 = 520 ps


3
 = 520 ps


b
 = 218 ps

Positron lifetime spectrum
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Trapping model

➢ Quantitative analysis of 
positron trapping by a set of 
rate equations

➢ Solution (lifetime spectrum):

Trapping rate: di = µCdi

Average positron lifetime: τ=∑
i
I i τi

∑
i

I i
τi
exp− tτi 

Trapping

Defect

Positron source

Thermalization

Annihilation
b


d


d

Defect-free bulk

Annihilation radiation

τ
1
 = 1/(λ

d
 + κ

d
), τ
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Positron capture in defects

  open volume  ≈ b

Positron potential V+(r) of a neutral and a negatively charged vacancy. The potential 
of a negatively charged acceptor  acting as a shallow positron trap is shown on the 
right. λ  is the annihilation rate (inverse positron lifetime). The trapping rate κ  is 
constant for neutral defects and a function of temperature for charged defects.
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Point defect density as a function 
of deformation conditions (i)

Density of vacancies and antisite defects
as a function of the strain. Result of 
measurements by positron annihilation in 
plastically deformed GaAs. Uniaxial 
compression in [110] direction at 773 K, 
strain rate 1×10−3 s−1.
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Total number of vacancies in the bulk (), 
vacancies bound to dislocations (), 
as well as number of Ga

As
 antisites () 

in plastically deformed GaAs. 
Deformation temperature 773 K, strain 3 %, 
strain rate 7.5×105 s1 (above),  
3×104 s1 (below).

Point defect density as a function 
of deformation conditions (ii)
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Positron lifetimes and capture rates
in deformed GaAs

Lifetime components:

➢  2 = d3 = (260 ± 5) ps

corresponds to a defect with the 
open volume of a monovacancy

➢  3 = d2 = (477 ± 20) ps

corresponds to a defect with a 
large open volume (vacancy 
cluster)

➢At low sample temperatures, 
another positron trap without 
open volume becomes active 
(e. g. antisite defects).
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Plastic deformation of silicon

Sample temperature (K)

Deformation at 1073 K
Deformation at 1173 K
Deformation at 1273 K
Undeformed reference
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Average positron lifetime a a function of the sample temperature in lightly P-doped 
FZ Si deformed in [110] direction. 7 % deformation, 2.1×10−5 s−1 strain rate.
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Comparison of high 
and low deformation temperatures

Positron lifetime as a function of 
the sample temperature in P-doped 
Si deformed at room temperature in 
comparison to high-temperature 
deformation
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Thermal stability of deformation-induced defects

T
def

 = 800 °C T
def

 = 20 °C

d2 = 540 ps 460 ps (as deformed)
– 530 ps (after annealing)

d3 = 280 ps – (as deformed)
280 ps – (after annealing)



hsl – Poitiers 2003-7-4 15CMAT

Dissociated dislocation in the diamond structure

Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° partial 
dislocation. There is an intrinsic stacking fault between the two partials. The drawing is 
along the (110) plane.

[111]

-
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Vacancy incorporation in dislocations

SF

[111]
Incorporation of a vacancy in the core 
of a 30° partial dislocation as a local 
transition from glide to shuffle set. 
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Dislocations as positron traps

V

x

y

+

┴

Positron potential V+(x,y) of a dislocation. The regular dislocation line 
is a shallow positron trap, while a bound vacancy acts as a deep trap.
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Trapping model in deformed crystals

(i = 1/i)
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Calculation of vacancy clusters

➢Construction of vacancy clusters and 
relaxation with a self-consistent charge-
density-functional-based tight binding (SCC 
DFTB) method [Elstner et al. 1998]
➢Method allows the modeling of large 

supercells (512 atoms), which are needed to 
avoid defect–defect interactions.
➢Different vacancy aggregates were examined 

in respect of their stability.
➢Construction scheme of closed structures 

with hexagonal rings of vacancies gives 
clusters of lowest total energy

Vacancy cluster in Si before and after relaxation
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Calculation of vacancy clusters
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Energy gained by adding a 

monovacancy to an aggregate of 

n – 1 vacancies in Si (upper part) 

and the corresponding positron 

lifetime (lower part).
[Staab et al. 1999]
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Results of calculations

➢Especially stable structures (n < 18): V12 in GaAs 
V6, V10, V14 in Si

➢Vacancy chains are not energetically favored structures
➢The experimentally observed long-lived positron lifetime 

component may be attributed to V12 in GaAs and to V14 in Si.

➢Magic numbers in silicon n = 4i + 2, i = 1, 2, 3, …
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Formation of vacancy clusters

Agglomeration of vacancies as a result of jog dragging at 
screw dislocations

Number of point defects

u

b1 
b 2

1

2

Vacancy cluster

C= 1
V

1⋅u×2
|1⋅u×2 |

b1⋅u×b2
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Superjogs

Formation of edge dipoles and prismatic dislocation loops

b

b

Jogs
Screw

TEM

Edge
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Vacancies and interstitials

b

Vacancies Interstitials

Secondary reactions lead to antisites:

IGa + VAs  GaAs IAs + VGa  AsGa
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Room temperature deformation of Si

➢No evidence of dislocations acting as shallow positron traps
→ low average dislocation density due to inhomogeneous 
deformation or due to other dislocation character ?
➢Large thermally stable vacancy clusters

→ formation by a jog dragging or cross slip mechanism ?

200 nm(111)

[110]
[132]− −

−

Perfect shuffle set dislocations 
nucleated during plastic deformation 
of Si under conditions of very high 
stress and low temperatures

[Rabier et al. 2002]

TEM
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Summary

 The formation of point defects during plastic deformation of 
semiconductors can be related to dislocation motion.

 The basic mechanism is the emission of vacancies and 
interstitials by screw dislocations containing jogs.

 Formation of long rows of vacancies is energetically 
unfavorable.

 Stable three-dimensional vacancy agglomerates are formed in 
a primary process by atomic re-arrangement directly at the 
climbing jog.

 Dislocations are combined positron traps with the regular 
dislocation line representing a shallow positron trap and 
bound vacancies as deep traps.
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Doppler-broadening spectroscopy

➢ Momentum conservation during annihilation 

→ Doppler shift of the annihilation energy:    ΔE = pzc/2

➢ Doppler spectrum consists of 106 events 

→ Doppler-broadening of the annihilation line

Ge
Detector

MCA

ADC

Stabilizer

Memory

LN2

22 Na
source

Sample
+


511 keV 511 keV

e+

e−
−



hsl – Poitiers 2003-7-4 28CMAT

Line-shape parameters
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Open-volume defects

➢S parameter 
➢W parameter 

Different sensitivity
➢S parameter – valence 

electron annihilation

→ open volume
➢W parameter – core 

electron annihilation

→ chemical environment 
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Monoenergetic positrons

Positron energy (eV)

β+ emission spectrum of 22Na
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The broad emission positron emission spectrum of a radioactive source (mean 

e+ penetration depth in silicon of 50 µm) can be moderated in a tungsten foil.
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Gettering centers in self-implanted Si

➢After high-energy (3.5 MeV) self-

implantation of Si (5×1015 cm−2) 

and RTA annealing (900 °C, 30 s) 

two gettering zones appear at Rp 

and Rp/2

(Rp projected range of Si+)

➢Visible by secondary ion mass 

spectrometry profiling after 

intentional Cu contamination

0.95

1.00

1.05

1.10

1.15

W
/W

b a
t 

7
.5

 k
e

V

0.995

1.000

1.005

1.010

1.015

S
/S

b a
t 

1
0

 k
e

V

 

0 1 2 3 4 5 6

10
16

10
17

P o s itro n

A n n ih ila tio n

S IM S

 

C
u

 d
e

n
s

it
y

 (
c

m

3 )

Depth (µm)

 

TEM



hsl – Poitiers 2003-7-4 31CMAT

Positron lifetime microscopy
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➢ At Rp/2, d = 450 ps 

(vacancy clusters, V
14

)

➢ At Rp, d = 320 ps 

(divacancy-type defect, 

related to dislocation 

loops)

Defect profile using the Munich 

positron lifetime microscope
[Krause-Rehberg et al. 2001]
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Variable-energy positron beam

e+ source E×B filter Collimator Accelerator Sample

0...50 kV

B

Magnetic
guidance field

Moderator

➢ Penetration depth in the sample: 0...5 µm
➢ Spot diameter: 5 mm
➢ Time per single Doppler broadening measurement: 20 min
➢ Time per depth scan: 8 h
➢ No lifetime measurements possible without bunching
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Defect profiling

Scan direction

Positron microbeam
8 keV

Lateral resolution
1 ... 2 µm

Scan width
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