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Overview

Positron techniques

Point defect generation during plastic deformation

What we can learn from positron annihilation about defect structures?
Calculations of vacancy clusters

Low temperature — high temperature deformation

Modell of point defect generation

Implantation-induced defects



Positron annihilation
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Capture in a vacancy

> Positrons may be captured during their diffusion in lattice defects.
> Annihilation rate (reciprocal lifetime) depends on the local electron

concentration at the annihilation site.




Positron annihilation techniques
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Positron lifetime spectrum

Decomposition of the experimental

o As-grown Cz Si ]
positron lifetime spectra

o Plastically deformed Si

» Undeformed Czochralski Si:
one component, 7, = 218 ps
> Plastically deformed Si:
(3 %, 1050 K)

three components
7, = 120 ps (not shown),

103}
' 7, =320 ps, 7, = 520 ps

Time (ns)
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Trapping model

Positron source

I Thermalization > Quantitative analysis of
positron trapping by a set of
C Defect-free bulk > rate equations
k. Trapping > Solution (lifetime spectrum):
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Positron capture in defects

A V+ 'y V+ V+ A
r r r
T ]
Coulomb potential Coulomb potential
A o« open volume A=A,

Positron potential V., (r) of a neutral and a negatively charged vacancy. The potential

of a negatively charged acceptor acting as a shallow positron trap is shown on the
right. A is the annihilation rate (inverse positron lifetime). The trapping rate x is
constant for neutral defects and a function of temperature for charged defects.
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Point defect density as a function
of deformation conditions (i)
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Density of vacancies and antisite defects
as a function of the strain. Result of
measurements by positron annihilation in
plastically deformed GaAs. Uniaxial
compression in [110] direction at 773 K,
strain rate 1x107 s7',

Relation between density
of excess vacancies and strain
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Point defect density as a function
of deformation conditions (ii)
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[001] [110] [213]
Deformation axis

Total number of vacancies in the bulk (),
vacancies bound to dislocations (O),

as well as number of Ga, antisites (<)

in plastically deformed GaAs.

Deformation temperature 773 K, strain 3 %,
strain rate 7.5%X107° s~! (above),

3X10~*s~1(below).



Positron lifetimes and capture rates
in deformed GaAs
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Lifetime components:

> T,=T,=(260£5) ps

corresponds to a defect with the
open volume of a monovacancy

> T, =T,y = (477 £20) ps

corresponds to a defect with a
large open volume (vacancy
cluster)

> At low sample temperatures,
another positron trap without
open volume becomes active
(e. g. antisite defects).

Ty =T,

cvaT &) B 11



Plastic deformation of silicon
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Average positron lifetime a a function of the sample temperature in lightly P-doped
FZ Si deformed in [110] direction. 7 % deformation, 2.1x107° s! strain rate.
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Positron lifetime as a function of
the sample temperature in P-doped
Si deformed at room temperature in
comparison to high-temperature
deformation



Thermal stability of deformation-induced defects
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Dissociated dislocation in the diamond structure

Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° partlal
dislocation. There is an intrinsic stacking fault between the two partials. The drawing is
along the (1 10) plane.




Vacancy incorporation in dislocations

Incorporation of a vacancy in the core
of a 30° partial dislocation as a local
transition from glide to shuffle set.




Dislocations as positron traps

y

Positron potential V,(x,y) of a dislocation. The regular dislocation line
is a shallow positron trap, while a bound vacancy acts as a deep trap.




Trapping model in deformed crystals

Positron source

T Thermalization
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Calculation of vacancy clusters

> Construction of vacancy clusters and
relaxation with a self-consistent charge-
density-functional-based tight binding (SCC
DFTB) method [Elstner et al. 1998]

> Method allows the modeling of large
supercells (512 atoms), which are needed to
avoid defect—defect interactions.

> Different vacancy aggregates were examined
in respect of their stability.

> Construction scheme of closed structures
with hexagonal rings of vacancies gives
clusters of lowest total energy

Vacancy cluster in Si before and after relaxation
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Calculation of vacancy clusters
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N

Positron lifetime (ps)

Energy gained by adding a
monovacancy to an aggregate of
n — 1 vacancies in Si (upper part)
and the corresponding positron

lifetime (lower part).
[Staab et al. 1999]
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Results of calculations

> Especially stable structures (n < 18): V,, in GaAs
V., V,, V,,1n Si

» Vacancy chains are not energetically favored structures
> The experimentally observed long-lived positron lifetime

component may be attributed to V,, in GaAs and to V,, in Si.
n=4i+2,i=1,2,3, ...

> Magic numbers in silicon



Formation of vacancy clusters

Vacancy cluster
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Agglomeration of vacancies as a result of jog dragging at
screw dislocations




Superjogs

Formation of edge dipoles and prismatic dislocation loops




Vacancies and interstitials

Vacancies Interstitials

/

Secondary reactions lead to antisites:

IGa + VAS - GaAs IAs + VGa - ASGa



Room temperature deformation of Si

> No evidence of dislocations acting as shallow positron traps
— low average dislocation density due to inhomogeneous
deformation or due to other dislocation character ?

> Large thermally stable vacancy clusters
— formation by a jog dragging or cross slip mechanism ?

200 nm

Perfect shuffle set dislocations
nucleated during plastic deformation
of Si under conditions of very high
stress and low temperatures

[Rabier et al. 2002]




Summary

M The formation of point defects during plastic deformation of
semiconductors can be related to dislocation motion.

M The basic mechanism is the emission of vacancies and
interstitials by screw dislocations containing jogs.

M Formation of long rows of vacancies is energetically
unfavorable.

M Stable three-dimensional vacancy agglomerates are formed in
a primary process by atomic re-arrangement directly at the
climbing jog.

M Dislocations are combined positron traps with the regular
dislocation line representing a shallow positron trap and
bound vacancies as deep traps.



Doppler-broadening spectroscopy
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» Momentum conservation during annihilation

— Doppler shift of the annihilation energy: AE = p_c/2

> Doppler spectrum consists of 10° events

— Doppler-broadening of the annihilation line
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Line-shape parameters

Open-volume defects
e Deformed

A Reference

> § parameter 7

> |/ parameter

Different sensitivity

> § parameter — valence

/
/

electron annihilation

Intensity (arbitrary units)

— open volume

Oy . > W parameter — core

electron annihilation
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— chemical environment




Monoenergetic positrons

Monoenergetic positrons
after moderation in a W foil

B* emission spectrum of ?Na
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The broad emission positron emission spectrum of a radioactive source (mean
¢’ penetration depth in silicon of 50 um) can be moderated in a tungsten foil.
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Gettering centers in self-implanted Si

W/Wb at 7.5 keV
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Depth (um)
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S/Sb at 10 keV

> After high-energy (3.5 MeV) self-
implantation of Si (5x10!° cm™)
and RTA annealing (900 °C, 30 s)
two gettering zones appear at R,

and R /2
(R projected range of Si7)

> Visible by secondary ion mass
spectrometry profiling after

intentional Cu contamination



Positron lifetime microscopy
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positron lifetime microscope
[ Krause-Rehberg ef al. 2001]
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Variable-energy positron beam

Sl IO
f = W (e

+
Moderator Magnetic 0...50 kV
— guidance field

Penetration depth in the sample: 0...5 um
Spot diameter: 5 mm
Time per single Doppler broadening measurement: 20 min

Time per depth scan: 8 h
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No lifetime measurements possible without bunching
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Defect profiling

Positron microbeam
8 keV

—— Scan direction
Defect depth

19pm

Lateral resolution
F*1..2um

Positron lifetime

0 Scan width 1 mm



