most important process of doping in Si planar technology

• Advantages:

- fast, homogenous on large wafers, reproducible result
- exact control of implanted amount of dopant (measurement of current); especially important for small dopant levels
- excellent cleaning of dopants during implantation by mass separation
- simple mask techniques with thick oxide-, nitride- und photo lacquer layers
- doping through thin passivation layers
- doping profile easily adjustable by multiple implantation (not possible by diffusion techniques)
- very small device structures possible

• Disadvantages:

- irradiation damage up to amorphisation
- additional annealing steps necessary (defect annealing)
- doping atoms often not at regular lattice sites after implantation (interstitial position); electrical activation necessary by additional annealing (diffusion of dopants, danger of impurities)
- implantation only possible for near-surface region
- Channeling leads to larger penetration depth of a fraction of dopant atoms

Some historical remarks about ion implantation

1952: bombardment of diods with He - improvement of blocking behavior (Ohl)

1955: attempt to dope Ge failed due to implantation defects (Cussins)

1957: first patent for ion implantation technique includes annealing step (Shockley)

1962: radiation detectors made by P-implanted Si

1963: Lindhardt, Scharff und Schiøtt – LSS theory for ion penetration in solids

1963: experimental study of ion implantation in crystalline and amorphous solids

1965: breakthrough by many studies

increasing interest due to high technological importance

LSS-Theory

- LSS-Theory: interaction of ions with amorphous solids (1963: Lindhardt, Scharff und Schiøtt)
- no channeling effect considered (amorphous state), no diffusion and no defect interaction
- interaction mainly by elastic collisions with cores and inelastic interaction with electrons
- energy loss cross section (Bremsquerschnitt) S

$$S_{e,n} = -\frac{1}{N} \left[\frac{dE}{dz} \right]_{e,n}$$

N... atomic density
z... distance

for B in Si: E1=3, E2=17 and E3=1000 keV for As in Si: E1=73, E2=800 and E3=10⁵ keV

Interaction of ions with solids

- elastic interaction: classical scattering theory is a good approximation
- it is obtained by energy and momentum conservation during central impact:

$$T_m = 4 \frac{m_1 m_2}{\left(m_1 + m_2\right)^2} E$$

 T_m is maximum transferable energy during central stroke

- T_m becomes maximum for equal masses $(T_m = E)$
- electronic deceleration is function of ion energy
- it is possible by this theory to calculate implantation depth distributions

Implantation depth distributions of ions

$$N(x) = \frac{N_0}{\sqrt{2\pi}\Delta R_P} \exp\left[-\frac{(x-R_P)^2}{2\Delta R_P^2}\right]$$

• maximum doping is

$$N_{max} = \frac{N_0}{\sqrt{2\pi}\Delta R_P}$$

- *R*_p ... **projected range** of implanted ion
- N_0 ... implanted dose

Implantation-induced defect generation

- when transferred energy > **displacement energy** (10 40 eV):
- Frenkel pairs are generated as result of a displacement cascade
- vacancy only stable, when it is located outside of recombination volume of interstitial atom (size of this volume is temperature dependent)
- primary ion generates many vacancies, but only a few survive

Depth distribution of atomic displacements

• electrons (e.g. 1 MeV) generate in Si just one Frenkel pair (bad energy transfer due to very different masses)

$$T_m = 4 \frac{m_1 m_2}{\left(m_1 + m_2\right)^2} E$$

- ions transfer much more energy \rightarrow generation of defect cascades
- sub-cascades appear
- heave ions: deposed energy density is larger, implantation depth smaller
- implantation damage = f (mass ratio Ion/target atom; energy; dose; dose rate; temperature)

Depth distribution of atomic displacements

- depth distribution of defects can be determined by Monte-Carlo-methods
- TRIM: TRansport of Ions in Matter (DOS)
- SRIM: Stopping and Range of Ions in Matter (Windows)
- does not take into account defect annealing, diffusion, dose rate effects and channeling →
- defect concentration too large, but distribution can sufficiently be calculated
- maximum of defect density before maximum of implanted ions

Depth distribution of atomic displacements

- SRIM is rather rough due to many simplifications
- however, comparison with more sophisticated simulations and experiments shows no strong deviations
- more difficult: simulations for ion implantation in compound semiconductors (e.g. InP)
- there are simulation programs which take into account the defect interaction and the crystal structure (e.g. Crystal-TRIM)

Defect evolution according to Hecking

- coexistence of crystalline and amorphous phases; relative fraction changes with implantation dose
- Range I weak damage: defect density increases continuously
- Range II medium damage: equilibrium between defect generation and annihilation of defects
- Range III strong damage: collapse-like amorphization during further accumulation of defects (depend on dose and dose rate!)

Amorphization dose is function of temperature and dose rate

- most simple assumption for calculation of amorphization dose: all target atoms must be moved ones
- however, real dose is even larger due to defect annealing during implantation
- no amorphization for B implantation in Si for T > 300K due to defect interaction and annealing

 $\begin{bmatrix} 8 \\ 8 \\ 101 \\$

influence of dose rate on defect generation

amorphization dose = f(T)

Channeling effect

- Ions penetrate deep along low-index axis into the crystal \rightarrow channeling effect
- penetration depth can be 10 times larger compared to a "random" direction
- in case of amorphous oxide cap layer: ions will be scattered, only a few will "find" the channels
- in semiconductor technology: tilt angle 7° ... 10° to avoid channeling

Defect generation in Si during weak damage

- defect density is function of dose: [defect] $\propto \Phi^{0.5}$
- exception: Si into Si, because implanted Si-ions are built-in on lattice site immediately: $[Si_V]$ smaller
- e.g. boron ends at interstitial position, needs additional annealing to be B_{Si}

S. Eichler, PhD Thesis, Halle 1998

Change of material properties by ion implantation

- many material properties change during implantation
- decrease of minority carrier lifetime: $10^{12} \text{ cm}^{-2} \text{ B in Si} \rightarrow \tau = 10^{-9} \text{ s}$
- free charge carriers are compensated; $\rho = 10^6 \dots 10^9 \Omega$ cm obtainable
- carrier mobility decreases too; may become smaller than $1 \text{ cm}^2/\text{Vs}$ (normal >10³)
- optical transmission becomes smaller by additional energy levels in the band gap
- refraction index (*Brechungsindex*) changes (thus also reflection index): light propagates in an inner layer (integrated light pipe)
- SIMOX: hidden SiO₂ isolation layer can be done by oxygen implantation and annealing
- for high doses: density- and volume change
- change of elastic and plastic properties (embrittlement of reaction pressure vessel steel in nuclear power plants)

Detection of defect density by observation of reflection coefficient; depth information obtained by layer-by-layer removal

Defects after ion implantation

Annealing of implantation defects

- implantation-induced defects must be annealed; for Si at 900° to 1000°C (often by infrared light as "rapid thermal annealing" - RTA)
- amorphous layers may have very good crystalline properties after annealing treatment
- high defect density can easily be measured by Rutherford-backscattering during annealing treatment

Annealing of implantation defects in Si

- below RT: monovacancies and interstitials
- 200 300 K: clustering of vacancies (formation of divacancies); formation of dislocation rings
- 400 500 K: E-center annealing (dopant atom-vacancy-complex) of group V atoms
- around 500 K: E-centers of group III atoms
- around 550 K: divacancies
- 600 1000 K: epitaxial recrystallization of amorphous layers (from crystalline side)
- >1200 K: dislocation loops
- 1683 K: melting point

Annealing of implantation defects in Si

- Positron Annihilation is very sensitive for detection of open-volume defects
- main annealing stage at 750 K (vacancies, divacancies and E-centers are annealed before)
- different annealing behavior for Cz-Si (contains up to 10^{18} cm⁻³ oxygen)
- obviously oxygen is part of defect complex in Cz-Si

Defect reactions during annealing

- during annealing: defect reactions take place
- so-called "S-W-Plot" of positron annihilation shows a sequence of different open-volume defects
- behavior in Cz-Si rather complicated: defect complexes are formed and dissolved during heating

Oxygen-vacancy-complexes in Cz-Si

- Infrared absorption of electron irradiated Cz-Si during annealing (Ikari, 1995)
- VO = so-called A-center anneals at RT
- many different V_xO_y complexes are formed in a sequence

Defect reaction during annealing

970°C für 30 min ausgeheilt

wurde [456]

- Implantation leads first to supersaturation (*Übersättigung*) of atoms on interstitial positions
- simple reaction to diminish the distortion energy: formation of dislocation loops during annealing
- annealing at 800°C: diameter ca. 20nm, density 300 ...
 650 μm⁻²
- further annealing leads to larger dislocation structures

Electrical activation of carriers

- implanted dopant atoms are not electrically active after implantation, e.g. B is not immediately active as an acceptor
- reason: dopant atoms are first on interstitial positions
- there they do not act as shallow dopant
- moreover: occupation of defect levels in band gap lead to compensation of carriers
- to reduce both effects: annealing
- activation of carriers for B:Si at about 600 K, is temperature of divacancy annealing

Gettering of impurities

- most important ways of gettering:
 - capture by lattice defects
 - decrease of diffusivity by forming chemical bounds
- irradiated Si layer getters rather good
- Example: 10^{16} cm⁻² 100 keV-Si-Ionen in Si
- getter experiments show that Cu und Ni getters easily, but Fe, Co und Au only slowly
- Differences due to solubility and diffusion
- result: Ar-radiation damage getters better than Pimplantation at T<1000°C

backscattering spectra (2 MeV He-Ions); radiation damage from front side, and Ni in-diffusion from back side

Problem: sputtering of material by ion implantation

- ions are also used to remove surface layers: sputtering (cleaning; depth profiles for chemical analysis with SIMS or AES)
- mostly no direct process
- energy deposited under surface leads to emission of atoms from surface

Abtragung von Silicium durch Ionenzerstäubung. Werte für 45 keV			
Ion	Dosis (cm^{-2})		
	10 ¹⁵	10 ¹⁶	10 ¹⁷
В	$6 \times 10^{-2} \text{ nm}$	0,6 nm	6 nm
Ar	0,35 nm	3,5 nm	35 nm
As	0,6 nm	6 nm	60 nm
Sb	0,78 nm	7,8 nm	78 nm

Problem: diffusion during annealing

- dopant atoms may diffuse during annealing of implantation-induced defects
- also during activation and defect annealing
- diffusivity is increased due to radiation damage

- R_P is expected depth of implantation
- defect-enhanced diffusion during 750°C-annealing

Problem: diffusion during annealing

Strahlungsbeschleunigte Diffusion von Arsen in Silicium durch Protonenbeschuß bei 900°C für 10 min abhängig vom Ort der Leerstellengeneration, der durch einen Pfeil gekennzeichnet ist

- proton irradiation provides sharp defect peak (depth is controlled by energy)
- shows clearly defect-induced diffusion
- experiment: diffusion in As:Si
- As is found in large depth, when proton irradiation creates defects in such a depth
- when defect depth is too large: effect disappears

Literature about ion implantation:

- Ryssel/Ruge: "Ionenimplantation", Teubner 1978
- H. Ryssel, H. Glawischnig "Ion Implantation Techniques", Springer, Heidelberg 1982; ISBN: 3540118780

Application: Ion-cutting and wafer bonding of GaN-Wafers

- proton irradiation creates defect-rich zone
- thin layers of GaN can be put on any substrate
- one wafer can be used to produce many layers

(current research of MPI Halle 2007: Dr. O. Moutanabbir)

As-implanted GaN: 2.6 10^{17} H⁺/cm² at 50 keV

High magnification XTEM image showing nanovoids (or nanobubbles) which appear bright.

