Hartmut S. Leipner: Structure of imperfect materials

2. Epitaxy and interface defects

- 2.1 Basic models of epitaxy
- 2.2 Heteroepitaxy
- 2.3 Formation of misfit dislocations
- 2.4 The critical thickness
- 2.5 Sources of misfit dislocations
- 2.6 Configuration of misfit dislocations

2.1 Basic models of epitaxy

- Growth of a single crystal layer on a single-crystalline substrate
- Homoepitaxy: material identical to the substrate
- Heteroepitaxy: different material
- Why epitaxy?
 - No bulk material available
 - Layers with special properties
 - Only high-quality layers are required (semiconductor technology)

Lattice constants

Bandgap energy versus lattice constant for a range of elemental and compound semiconductors

Basic models of homoepitaxy

Energetic considerations:

$$\gamma_{\rm e} + \gamma_{\rm i} \le \gamma_{\rm s}$$

Layer-by-layer growth (Frank-van der Merwe)

$$> \gamma_{\rm s}$$

2D growth + coalescence (Volmer–Weber)

Kinetics of layer growth

Nucleation mechanism

Homogeneous nucleation (high supersaturation, non-continuous growth)

Heterogeneous nucleation at suitable defects – steps (low supersaturation, continuous growth)

Surface morphology

Bundling of steps, wavy surface (topologically unstable)

Step of monoatomic height in equal distances (topologically stable)

Surface steps

Scanning tunneling microscopy of surface steps on (111) Si.

$$U = 2.2 \text{ V}, I = 0.8 \text{ nA}, 95 \times 95 \text{ nm}.$$

[Kraus:2001]

2.2 Heteroepitaxy

Lattice misfit
$$f = \frac{a_e - a_s}{a_s}$$

Strain energy (per unit thickness h) $E_f = 2G \frac{1+\nu}{1-\nu} f^2$

Pseudomorphic growth

Energetic considerations:

$$\gamma_{\rm e} + \gamma_{\rm i} + E_{\it f} h \le \gamma_{\rm s}$$

Growth of closed layers (Frank-van der Merwe)

$$> \gamma_{\rm s}$$

- a) 2D growth + coalescence (Volmer–Weber)
- b) Island growth on top of a wetting layer (Stranski-Krastanov)

Further growth:

- a) Elastic relaxation
- b) Plastic relaxation $(E_{t}h)$ increases)

Stranski-Krastanov growth

Stranski-Krastanov growth of SiGe on (001) Si. Liquid phase epitaxy. Cross-section TEM image. [Albrecht, Strunk: 1999]

Epitaxy modes

Epitaxial nucleation modes in heteroepitaxy: *a*) layer-by-layer, *b*) Stranski–Krastanov, and *c*) clustered.

Measurements of clustered vs. layer-by-layer growth in the $Si_{1-x}Ge_x/Si$ (001) system for molecular beam epitaxy.

[Bean et al. 1984]

Islands

Scanning tunneling microscopy of CoO islands on a Ag substrate. The diameter of the island amounts to about 6 – 8 nm. The layer thickness corresponds to 1, 2, and 3 monolayers. Single atoms in the CoO can be resolved.

[Widdra 2004]

Elastic relaxation

Elastic relaxation during island growth

Ripples = sinusoidal undulations

Ripples

Ripples in $Si_{0.97}Ge_{0.03}$ on (001) Si. Liquid phase epitaxy. Light microscopy, Normarski differential interference contrast. Ripple amplitude 5.4 nm, layer thickness 150 nm, wavelength 11.7 μ m.

[Albrecht, Strunk: 1999]

2.3 Formation of misfit dislocations

Pseudomorphic layer

- Misfit stress
- Thermally unstable against plastic/diffusive relaxation

Relaxed layer

- Almost no elastic stress
- Rather stable
- Presence of lattice defects affects processing
- Recombination activity of defects

Modeling of misfit dislocations

What has to be considered?

- 1. Generation of dislocations
- 2. Dislocation motion
- 3. Dislocation multiplication and interaction

Conditions

- 1. Crystallography of the real system combination of different lattice types
- 2. Slip geometry
- 3. Population of intrinsic defects

Consequence

Restriction on simple systems

2.4 The concept of critical thickness

- h_{crit} thickness at which the self-energy of dislocation is equal to the strain energy
- ullet Below $h_{\rm crit}$, formation of dislocations energetically unfavorable
- **Frank–van der Merwe**: calculation of density of interface dislocation from mathematical analysis of interfacial energy
- Matthews-Blakeslee: consideration of the stress on pre-existing, threading dislocations
- **Dodson–Tsao**: strain relaxation rates are kinetically limited, *i.e.* dislocation nucleation and growth rates have to be considered

The Matthews-Blakeslee model

- Above the critical thickness, there is a driving force of dislocation motion in the interface due to the lattice mismatch.
- For $h = h_{\text{crit}}$, $\sigma_{\text{t}} = \sigma_{f}$ (σ_{t} restoring stress due to the line tension of the dislocation, σ_{f} stress due to the lattice mismatch)

Measurement of critical thickness

Measurement of critical thickness in the $Si_{1-x}Ge_x/Si$ (001) system for different growth temperatures vs. the prediction of the Matthews-Blakeslee model [Hull:94]

The Dodson-Tsao model

- Relaxation of the epitaxial layer is controlled by thermal activation of dislocation glide processes
- Dislocation velocity (analogous bulk material) $v = v_0 \sigma_{\rm eff} \exp\left(-\frac{Q}{k_{\rm B}T}\right)$ ($\sigma_{\rm eff}$ effective driving stress in MPa, Q activation energy, v_0 prefactor)
- Four stages of strain relaxation in the Dodson-Tsao model

Anisotropic relaxation in compound semiconductors

Cathodoluminescence investigation of plastic relaxation in ZnSe/GaAs(001) heterostructures

[Hilpert:2001]

2.5 Sources of misfit dislocations

- Multiplication mechanisms arising from dislocation pinning or interaction
- Heterogeneous nucleation at specific local stress concentrations, e.g. growth artifacts or substrate defects
- Homogeneous (spontaneous)
 nucleation of dislocation loops

Generation of misfit dislocations from different sources:

a) the pre-existing threading dislocation model and *b*) the half-loop generation from the free surface.

TEM examples

200 nm

1 μm

TEM weak-beam image showing the generation of a misfit dislocation bc from a threading dislocation ab. The short segment cd corresponds to the threading dislocation in the layer. InGaAs/GaAs single heterostructure.

TEM weak-beam image of the generation of misfit dislocations at an inhomogeneous source. InGaAs/GaAs single heterostructure.

[Zou 2001]

Generation mechanisms

Compilation of Vdovin 1999

Dislocation behavior	Mechanism	Author
	Bending	[Matthews 1966]
	Surface generation	[Matthews et al. 1970]
	Interface generation	[Perovic, Houghton 1995]
	Interface precipitation	[Perovic <i>et al.</i> 1989,
		Fitzgerald <i>et al.</i> 1989, Eaglesham <i>et al.</i> 1989]

2.6 Configurations of misfit dislocations

TEM images from an (001) $In_{0.1}Ga_{0.9}As$ single heterostructure on (001) GaAs. *a*) Layer thickness of 100 nm, *b*) 200 nm.

[Zou 2001]

Alignment of misfit dislocations

Misfit dislocations in (001) ZnSe/GaAs. MBE growth, layer thickness 495 nm. TEM bright field image.

Dissociated misfit dislocations

Possible configuration of misfit dislocations

Configuration of a dissociated misfit dislocation in a heterostructure

A high-resolution TEM image of a cross-section sample of a InGaAs heterostructure showing a dissociated 60° misfit dislocation. The 90° partial is near the strained interface, while the 30° is in the substrate.

[Zou 2001]

Stacking faults in the epitaxial layer

1 µm

Stacking faults and threading dislocations in heteroepitaxial (111)CdTe/(001)GaAs. TEM bright field image, *g* diffraction vector.

Defects in CdTe/GaAs

Stacking fault tetrahedra, misfit and threading dislocations in heteroepitaxial (111)CdTe/(001)GaAs. Plane view transmission electron microscopy. The cross section of the TEM foil is shown below.

References

- H. Bethge, J. Heydenreich: Electron microscopy in solid state physics. Amsterdam: Elsevier 1987.
- A. Kraus: Präparation und Charakterisierung von Nanostrukturen mittels Rastertunnelmikroskopie auf Si(111). Martin-Luther-Universität Halle 2002
- H. P. Strunk et al. phys. stat. sol. (a) **171** (1999) 215.
- W. Widdra: Sci. hal. 2 (2004) 31.
- R. Hull, J. Bean: MRS Bulletin (1994) 32.
- U. Hilpert: Defektinduzierte optische und elektronische Eigenschaften von II–VI Halbleiterheterostrukturen. Martin-Luther-Universität Halle 2001.
- J. Zou, D. J. H. Cockayne in: Transmission electron microscopy investigations of misfit dislocations in lattice-mismatched semiconductor heterostructures. Ed. X.-F. Zhang, Z. Zhang. Berlin: Springer 2001, p. 247.
- V. I. Vdovin: phys. stat. sol. (a) **171** (1999) 215.