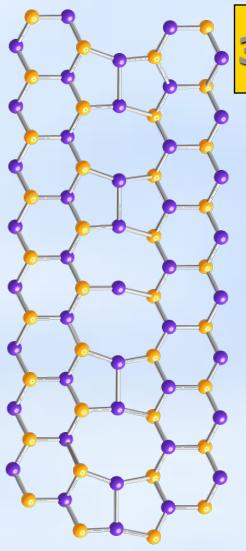
Hartmut S. Leipner: Defects in imperfect materials



3.2 Elasticity theory of dislocations

- Basics of linear elasticity theory
- Stress field of a straight dislocation
- Strain energy
- Forces on dislocations

All rights reserved © CMAT Halle 2018

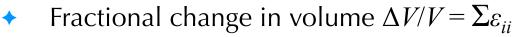
Basics of linear elasticity theory

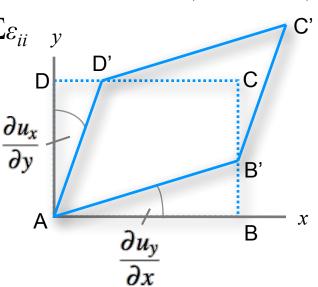
- Displacement vector $\boldsymbol{u} = (u_{x'}, u_{y'}, u_z)$
- Nine components of the strain tensor

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial u_y}{\partial y}, \quad \varepsilon_{zz} = \frac{\partial u_z}{\partial z}$$

$$\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$$
$$\varepsilon_{yz} = \varepsilon_{zy} = \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right)$$

shear strain $\varepsilon_{zx} = \varepsilon_{xz} = \frac{1}{2} \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} \right)$



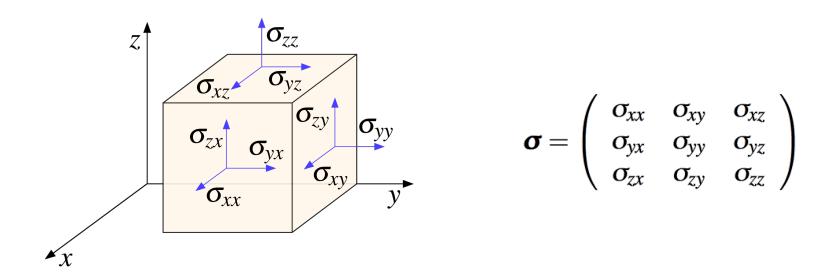


Stress in the solid

- Considering a small cubic volume element in a solid, the total stress state can be described by the forces perpendicular and parallel to the faces of the cube.
- On each face, three stresses:

1 normal σ_{ii} , 2 shear σ_{ij} ($i \neq j$; i, j = x, y, z)

All together nine components of the stress



Stress tensor

- Stress tensor is symmetrical, $\sigma_{ij} = \sigma_{ji}$ (rotational equilibrium).
- Magnitude of the individual components depends on the orientation of the coordinate system.
- A special coordinate system can always be found, where there are only normal stresses,

$$\boldsymbol{\sigma} = \left(\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array} \right)$$

- Positive normal stress as tension
- Hydrostatic pressure is the average normal stress,

$$p=\frac{1}{3}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)$$

Strain

 Generally, the elastic deviation of the shape of the solid can be expressed as a strain tensor,

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = egin{pmatrix} arepsilon_{xx} & arepsilon_{xy} & arepsilon_{xz} \ arepsilon_{yx} & arepsilon_{yy} & arepsilon_{yz} \ arepsilon_{zx} & arepsilon_{zy} & arepsilon_{zz} \end{pmatrix}$$

Strain tensor also symmetrical

$$\frac{V-V_0}{V_0} = \boldsymbol{\varepsilon}_{xx} + \boldsymbol{\varepsilon}_{yy} + \boldsymbol{\varepsilon}_{zz}$$

Stress-strain relationships

- Stress as force per unit area of surface; consider orientation of the surface and direction of the force
- Uniaxial tension $\sigma = \tilde{E}\varepsilon$, shear $\tau = G\gamma$
- Special cases of Hooke's law $\boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\varepsilon}$
- Relation between stress and strain tensors

• Expression of 9 equation like
$$\sigma_{ij} = \sum_{i,j,k,l=1}^{3} C_{ijkl} \varepsilon_{kl}$$

• C has $3^4 = 81$ components C_{ijkl} (4th rank tensor)

Elastic constants C

- In praxi, number of constants is reduced due to symmetry.
- For isotropic solids only two parameters (e. g. G and Lamé constant $\tilde{\lambda}$)

$$egin{aligned} \sigma_{xx} &= 2Gm{arepsilon}_{xx} + ilde{\lambda} \sum m{arepsilon}_{ii} \ \sigma_{yy} &= 2Gm{arepsilon}_{yy} + ilde{\lambda} \sum m{arepsilon}_{ii} \ \sigma_{zz} &= 2Gm{arepsilon}_{zz} + ilde{\lambda} \sum m{arepsilon}_{ii} \ \sigma_{xy} &= 2Gm{arepsilon}_{xy} & \sigma_{yz} &= 2Gm{arepsilon}_{yz} & \sigma_{zx} &= 2Gm{arepsilon}_{zx} \end{aligned}$$

In cubic crystals, three constants are needed.

Elastic moduls

• Constants used for isotropic solids: Young's modulus \tilde{E} , Poisson's constant v, and bulk modulus \tilde{K} ,

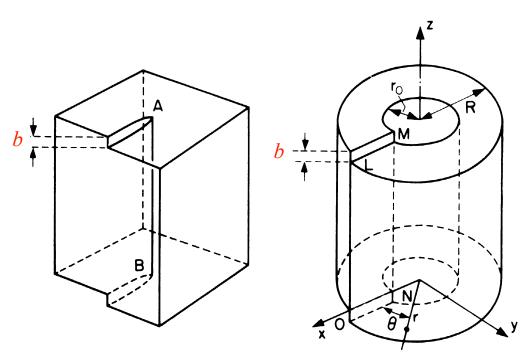
$$\tilde{E} = 2G(1+\nu)$$
 $\nu = \frac{1}{2(1+G)}$ $\tilde{K} = \frac{\tilde{E}}{3(1-2\nu)}$

+ Poisson's constant

Elongation in *x*-direction connected with reduction of cross section

$$\varepsilon_{yy} = \varepsilon_{zz} = -v\varepsilon_{xx}$$

Strain field of a straight screw dislocation



Volterra screw dislocation [Hull, Bacon 1992]

- Representation as a cylinder of elastic material
- Slit LMNO || z axis, surface
 displaced by b

Displacements:

$$u_x = u_y = 0$$
$$u_z = \frac{b\theta}{2\pi} = \frac{b}{2\pi} \arctan \frac{y}{x}$$

 Cylinder with radius r₀
 not taken into account: assumptions of *linear* elasticity theory not valid

Straight screw dislocation

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{xy} = \varepsilon_{yx} = 0 \qquad \sigma_{xx} = \sigma_{yy} = \sigma_{zz} = \sigma_{xy} = \sigma_{yx} = 0$$

$$\varepsilon_{xz} = \varepsilon_{zx} = -\frac{b}{4\pi} \frac{y}{(x^2 + y^2)} = -\frac{b}{4\pi} \frac{\sin\theta}{r} \qquad \sigma_{xz} = \sigma_{zx} = -\frac{Gb}{2\pi} \frac{y}{(x^2 + y^2)} = -\frac{Gb}{2\pi} \frac{\sin\theta}{r}$$

$$\varepsilon_{yz} = \varepsilon_{zy} = -\frac{b}{4\pi} \frac{x}{(x^2 + y^2)} = -\frac{b}{4\pi} \frac{\cos\theta}{r} \qquad \sigma_{yz} = \sigma_{zy} = -\frac{Gb}{2\pi} \frac{x}{(x^2 + y^2)} = -\frac{Gb}{2\pi} \frac{\cos\theta}{r}$$

Simpler form in cylindrical coordinates:

Using
$$\sigma_{rz} = \sigma_{xz} \cos\theta + \sigma_{yz} \sin\theta$$

 $\sigma_{\theta z} = -\sigma_{xz} \sin\theta + \sigma_{yz} \cos\theta$

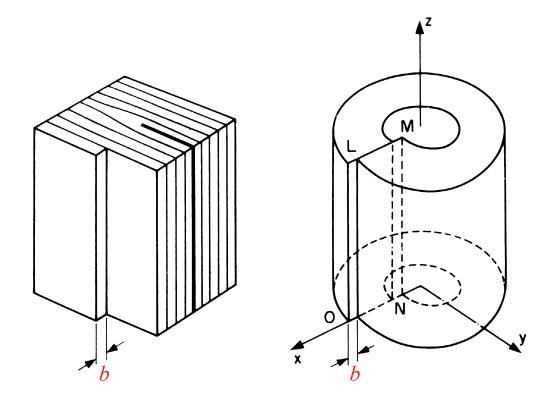
$$\varepsilon_{\theta z} = \varepsilon_{z\theta} = \frac{b}{4\pi r}$$
$$\sigma_{\theta z} = \sigma_{z\theta} = \frac{Gb}{2\pi r}$$

(the only non-zero components)

Discussion of the strain and stress fields

- Strain and stress $\propto 1/r$, diverge with $r \rightarrow 0$
- Linear elasticity approach not valid at the center of the dislocation
- Dislocation core with atomistic model
- ◆ Theoretical stress limit reached at $r \approx b$
- ◆ Reasonable core radius \leq 1 nm

Stress field of a straight edge dislocation



$$\sigma_{xz} = \sigma_{zx} = \sigma_{yz} = \sigma_{zy} = 0$$

$$\sigma_{xx} = -\frac{Gb}{2\pi(1-\nu)} \frac{y(3x^2+y^2)}{(x^2+y^2)^2}$$

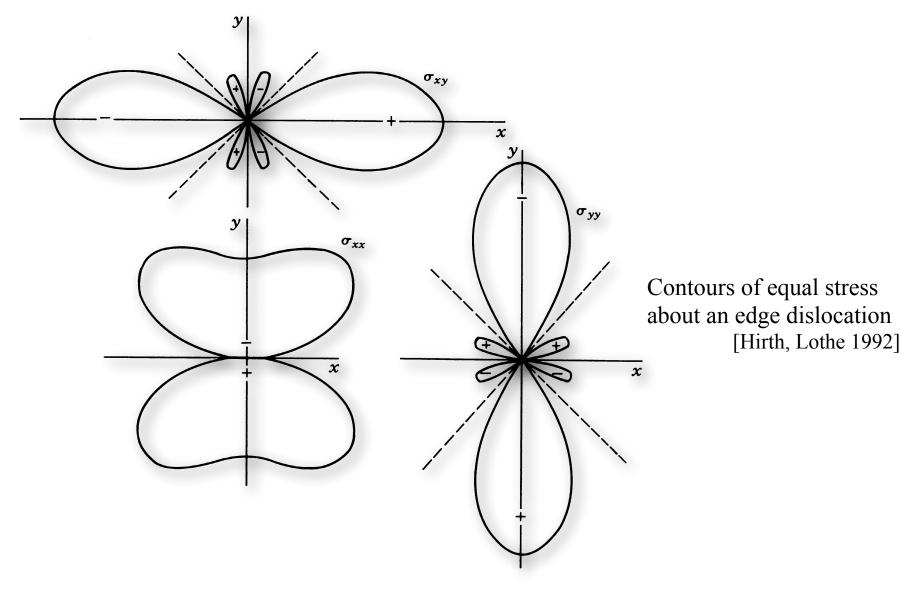
$$\sigma_{yy} = \frac{Gb}{2\pi(1-\nu)} \frac{y(x^2-y^2)}{(x^2+y^2)^2}$$

$$\sigma_{xy} = \sigma_{yx} = \frac{Gb}{2\pi(1-\nu)} \frac{x(x^2-y^2)}{(x^2+y^2)^2}$$

$$\sigma_{zz} = \nu (\sigma_{xx} + \sigma_{yy})$$

Volterra edge dislocation [Hull, Bacon 1992]

Stress field contours of an edge dislocation



Stress field of an edge dislocation

- Deformation is basically a plane strain.
- Both dilatational and shear components exist.
- ◆ Largest normal stress σ_{xx} || Burgers vector
- Max. compressive stress immediately above y = 0 (slip plane)
 max. tensile stress immediately below y = 0
- Pressure on a volume element

$$p = \frac{2}{3} \frac{Gb(1+v)}{1-v} \frac{y}{x^2 + v^2}$$

Strain energy of a dislocation

• Elastic strain energy in theory of elasticity: $dE = \frac{1}{2} dV \sum_{i} \sum_{j} \sigma_{ij} \varepsilon_{ij}$

• Two parts of the total strain energy of a body containing a dislocation: $E = E_{core} + E_{el}$

Elastic energy per unit length of a screw:
$$dE_{el} = \frac{1}{2} 2\pi r \, dr \left(\sigma_{\theta_z} \varepsilon_{\theta_z} + \sigma_{z\theta} \varepsilon_{z\theta}\right)$$

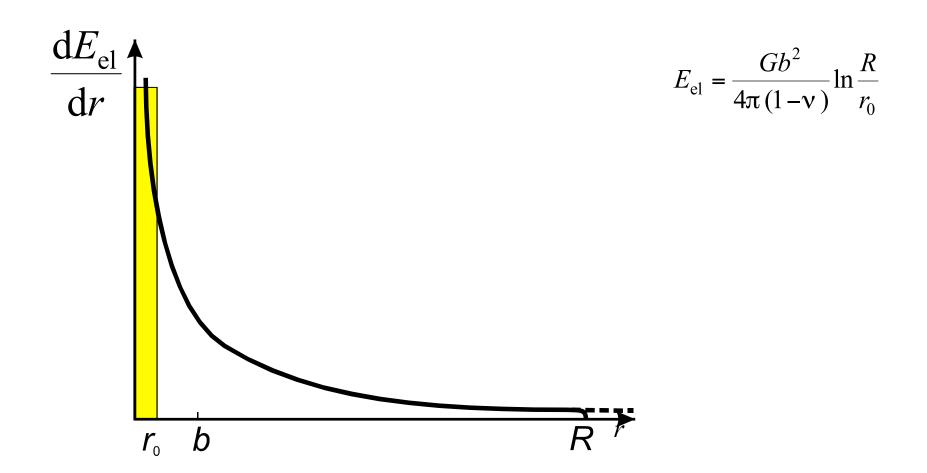
$$= \frac{Gb^2}{4\pi} \frac{dr}{r}$$

$$E_{el} = \frac{Gb^2}{4\pi} \int_{r_0}^{R} \frac{dr}{r} = \frac{Gb^2}{4\pi} \ln \frac{R}{r_0} \quad \text{(Total elastic energy per unit length)}$$

Discussion of the strain energy

- ◆ Strain energy of an edge more complicated to calculate (lower symmetry) $E_{\rm el} = \frac{Gb^2}{4\pi (1-y)} \ln \frac{R}{r_{\rm e}}$
- Elastic energy of an edge dislocation higher by about 3/2 than that of a screw
- E_{el} depends on r_0 and R (core radius and cut-off radius).
- ◆ Example: G = 4·10¹⁰ Nm⁻², r₀ = 1 nm, R = 1 mm, b = 0.25 nm
 *E*_{el} ≈ 6 eV per unit length of a dislocation
- R corresponds to crystal dimensions. $R = \frac{1}{2\sqrt{\rho}}$
- For many dislocations in a crystal, superposition of the long-range strain fields

Elastic energy of dislocations



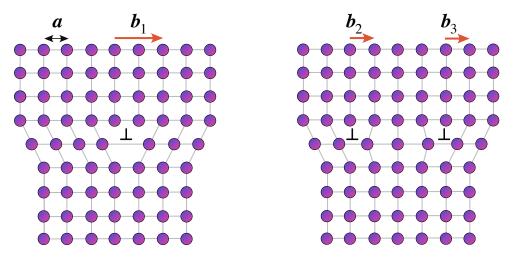
Elastic energy in a ring cylinder of the thickness dr

Energy of mixed dislocations

• Superposition of edge and screw parts E_{el} =

- $E_{\rm el} \approx \alpha G b^2$, with $\alpha \approx 0.5...1.0$
- Shortest lattice translation vectors preferred as E_{el} is at min.

$$= \left[\frac{Gb_{e}^{2}}{4\pi(1-\nu)} + \frac{Gb_{s}^{2}}{4\pi}\right]\ln\frac{R}{r_{0}}$$
$$= \left[\frac{Gb^{2}\sin^{2}\vartheta}{4\pi(1-\nu)} + \frac{Gb^{2}\cos^{2}\vartheta}{4\pi}\right]\ln\frac{R}{r_{0}}$$
$$= \frac{Gb^{2}(1-\nu\cos^{2}\vartheta)}{4\pi(1-\nu)}\ln\frac{R}{r_{0}}$$



Splitting of a dislocation with $\boldsymbol{b}_1 = 2\boldsymbol{a}$ into two dislocations with $\boldsymbol{b}_2 = \boldsymbol{b}_3 = \boldsymbol{a}$, $E_1 \propto 4a^2, E_2 = E_3 \propto 2a^2$

Frank's rule

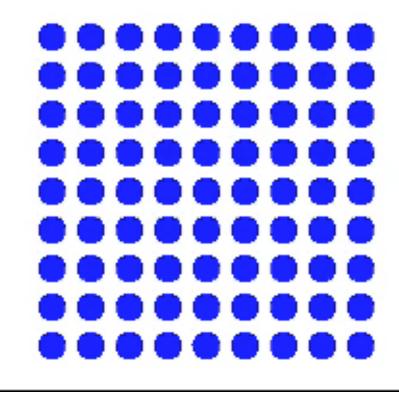
Energy criterion for dislocation reaction

 $b_{1} + b_{2} + b_{3} + b_{2} = b_{3}$ $Condition with angle \varphi:$ $\pi/2 < \varphi \le \pi$ Reaction preferred

 $b_1^2 + b_2^2 > b_3^2$ Reaction favorable

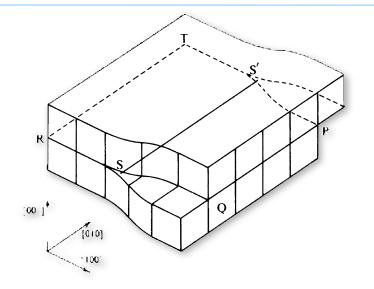
 $0 \leq \varphi < \pi/2$ Dissociation preferred

Elementary process of plastic deformation



The motion of dislocations is the elementary process of the plastic deformation of crystals.

External forces on dislocations



Dislocation separates slipped region from unslipped one
 Deformation work may be done by external force ⇒ shift of the dislocation

Plast

Plastic deformation by motion of a dislocation

[Kelly:2000]

Definition of force

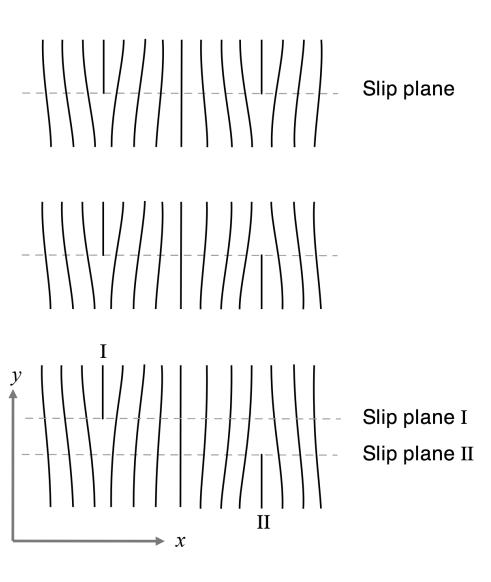
- Dislocation of length L, swept distance on the slip plane x
- Applied shear force on the crystal (per length *L*): $F = \sigma x$
- Work done by the crystal (per length *L*): $W = \sigma x b$

 Definition of a force (per length *L*) to move the dislocation in *x*-direction: work *W* = force on dislocation × *x*

• $F_d = \sigma b$

 \mathcal{X}

Forces between dislocations

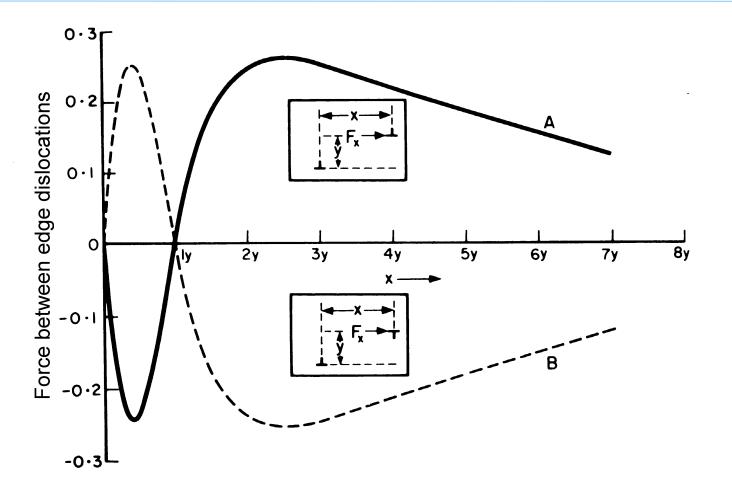


- Edge dislocations with the same slip plane
 repulsive force if *b* has the same sign, attractive if opposite sign
- More complicated, if slip planes different
- Displacement in dislocation I is Burgers vector *b* of dislocation II

Calculation of the force

Components of the force on dislocation II per unit length $(b_x = b, b_y = b_z = 0)$:

Force between parallel edge dislocations



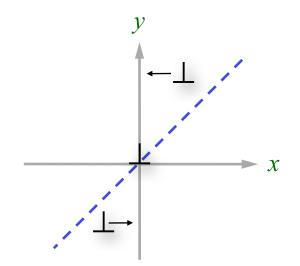
Force between parallel edge dislocations. Unit of force F_x is $Gb^2y/[2\pi(1 - v)]$. Curve A for like dislocations, curve B for unlike dislocations.

[Hull, Bacon 1993/Cottrell 1953]

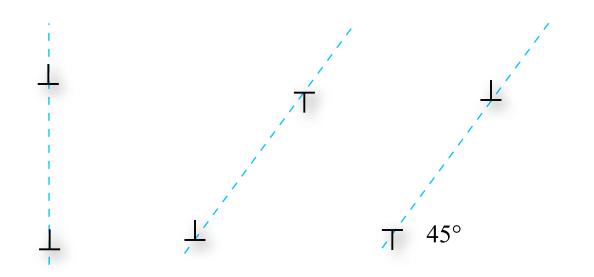
Interaction force between edge dislocations

- Dislocations motion only in the slip plane most important F_x
- For x > 0, $F_x < 0$ (attractive) if x < y
- For x < 0, $F_x > 0$ (attractive) if x < -y

(dislocations of the same sign)



Stable positions of edge dislocations

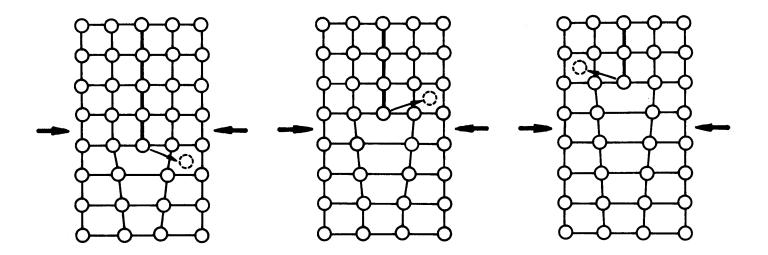


Interaction force between screws

- Screws much easier: attractive for opposite sign, repulsive for the same sign
- No forces between parallel screw and edge dislocations, as the stress fields are not mixing

Climb force

- Force F_y not in glide plane, no *conservative* motion of dislocation possible
- Motion only possible, if intrinsic point defects can be emitted or absorbed
- Vacancy or interstitial mechanism



Emission of interstitials by dislocation climb

Chemical force

- No. of vacancies absorbed: *bls*/Ω
 (*l* length of dislocation segment, *s* climb distance, Ω atomic volume)
- Change in the vacancy concentration potential of vacancies

$$c = \exp\left(-\frac{E_{\rm f} + F_y \Omega / b}{k_{\rm B}T}\right)$$
$$= c_0 \exp\left(-\frac{F_y \Omega}{b k_{\rm B}T}\right)$$

- vice versa: chemical force f by supersaturation of vacancies
- Dislocation climbs, until equilibrium between f and F_y

$$f = \frac{bk_{\rm B}T}{\Omega} \ln \frac{c}{c_0}$$

Summary

- Elastic energy of a dislocation $\propto Gb^2$
- Total energy $E_{\rm el} + E_{\rm core}$
- Frank's energy criterion for dislocation reaction:

 $b_1^2 + b_2^2 > b_3^2$

- Glide force on dislocation σb (per unit length)
- Repulsive and attractive slip forces responsible for dislocation patterning
- Interaction between point defects and dislocations gives rise to climb

Literature

- D. Hull, D. J. Bacon: Introduction to dislocations. Oxford: Pergamon Press 1992.
- J. P. Hirth, J. Lothe: Theory of dislocations. New York: Wiley 1982.
- A. Kelly, G. W. Groves, P. Kidd:

Crystallography and crystal defects. Chichester: Wiley 2000.