
3.2 Elasticity theory of dislocations

✦ Basics of linear elasticity theory

✦ Stress field of a straight dislocation

✦ Strain energy

✦ Forces on dislocations
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✦  Displacement vector u = (ux, uy, uz)  

✦  Nine components of the strain tensor

✦  εij << 1,  
 εii normal strain, εij (i ≠ j) shear strain
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✦ Fractional change in volume ΔV/V = Σεii

Basics of linear elasticity theory



✦ Considering a small cubic volume element in a solid, the total 
stress state can be described by the forces perpendicular and 
parallel to the faces of the cube. 

✦ On each face, three stresses:  
1 normal σii, 2 shear σij (i ≠ j; i, j = x, y, z)  

✦ All together nine components of the stress  

Stress in the solid



Stress tensor

✦ Stress tensor is symmetrical, σij = σji (rotational equilibrium). 

✦ Magnitude of the individual components depends on the 
orientation of the coordinate system. 

✦ A special coordinate system can always be found, where 
there are only normal stresses, 

✦ Positive normal stress as tension 

✦ Hydrostatic pressure is the average normal stress,



Strain

✦ Generally, the elastic deviation of the shape of the solid can 
be expressed as a strain tensor, 

✦ εii elongations, εij shear (i ≠ j) 
✦ Strain tensor also symmetrical



Stress–strain relationships

✦ Stress as force per unit area of surface; consider 
orientation of the surface and direction of the force 

✦ Uniaxial tension σ = Ẽε, shear τ = Gγ 
✦ Special cases of Hooke’s law 

✦ Relation between stress and strain tensors 

✦ Expression of 9 equation like  

✦ C has 34 = 81 components Cijkl (4th rank tensor)



Elastic constants C

✦ In praxi, number of constants is reduced due to symmetry. 
✦ For isotropic solids only two parameters (e. g. G and Lamé constant λ) 
 
 
 

✦ In cubic crystals, three constants are needed.

~



Elastic moduls

✦ Constants used for isotropic solids: Young’s modulus Ẽ, 

Poisson’s constant ν, and bulk modulus K,  

✦ Poisson’s constant 
Elongation in x-direction connected with reduction of cross 

section 
    
   εyy = εzz = -νεxx

~



Volterra screw dislocation 
  [Hull, Bacon 1992]

✦ Representation as a cylinder  
of elastic material 

✦ Slit LMNO || z axis, surface 
displaced by b

Displacements: 

ux = uy = 0

Strain field of a straight screw dislocation

b b

✦ Cylinder with radius r0 

not taken into account:  
assumptions of linear 
elasticity theory not valid



Simpler form in cylindrical coordinates: 

Using  σrz = σxz cosθ + σyz sinθ 
 σθz = –σxz sinθ + σyz cosθ

(the only non-zero  
components)

Straight screw dislocation



✦  Strain and stress ∝ 1/r, diverge with r → 0 

✦  Linear elasticity approach not valid at the center of the dislocation 

✦  Dislocation core with atomistic model 

✦  Theoretical stress limit reached at r ≈ b 

✦  Reasonable core radius ≤ 1 nm

Discussion of the strain and stress fields



Volterra edge dislocation 
[Hull, Bacon 1992]
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Stress field of a straight edge dislocation



Stress field edge dislocation

Contours of equal stress 
about an edge dislocation 

[Hirth, Lothe 1992]

Stress field contours of an edge dislocation



✦ Deformation is basically a plane strain. 

✦ Both dilatational and shear components exist. 

✦ Largest normal stress σxx || Burgers vector 

✦ Max. compressive stress immediately above y = 0 (slip plane) 
max. tensile stress immediately below y = 0 

✦ Pressure on a volume element

Stress field of an edge dislocation



✦ Elastic strain energy in theory of elasticity: 

✦ Two parts of the total strain energy of a body containing 
a dislocation: 
E = Ecore + Eel

Strain energy of a dislocation

(Total elastic energy per unit length)

✦ Elastic energy per unit length of a screw:



✦ Strain energy of an edge more complicated to calculate  
(lower symmetry) 

✦ Elastic energy of an edge dislocation higher by about 3/2 
than that of a screw 

✦ Eel depends on r0 and R (core radius and cut-off radius). 
✦ Example: G = 4·1010 Nm-2, r0 = 1 nm, R = 1 mm, b = 0.25 nm 

Eel ≈ 6 eV per unit length of a dislocation  

✦ R corresponds to crystal dimensions. 
✦ For many dislocations in a crystal,  

superposition of the long-range strain fields

Discussion of the strain energy



Elastic energy screw

Elastic energy of dislocations

r

Elastic energy in a ring cylinder of the thickness dr
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✦  Superposition of edge and screw parts

✦  Eel ≈ αGb2, with α ≈ 0.5…1.0 
✦  Shortest lattice translation vectors  

 preferred as Eel is at min.

Splitting of a dislocation with b1 = 2a 

into two dislocations with b2 = b3 = a, 
E1 ∝ 4a2, E2 = E3 ∝ 2a2

Energy of mixed dislocations



+ =
b1

b2
b3

b1 + b2 = b3

✦ Energy criterion for dislocation reaction

Reaction favorable

φ 
✦ Condition with angle φ: 
  π/2 < φ ≤ π  Reaction preferred 
     0  ≤ φ < π/2 Dissociation preferred

Frank’s rule



Elementary process of plastic deformation

The motion of dislocations is the elementary 
process of the plastic deformation of crystals. 



External forces on dislocations

✦ Dislocation separates slipped 
region from unslipped one 

✦ Deformation work may be done 

by external force ⇒  shift of the 

dislocation

Plastic deformation by motion of a dislocation 
[Kelly:2000]



✦ Dislocation of length L, swept distance on the slip plane x 
✦ Applied shear force on the crystal (per length L): F = σx 
✦ Work done by the crystal (per length L): W = σx b 

L
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b

✦ Definition of a force (per length L) to move the dislocation 

in x-direction: work W = force on dislocation × x 
✦ Fd = σb 

Definition of force



✦ Edge dislocations with the same 
slip plane 
repulsive force if b has the same 
sign, attractive if opposite sign 

✦ More complicated, if slip planes 
different 

✦ Displacement in dislocation I is 
Burgers vector b of dislocation II

Forces between dislocations
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Calculation of the force

Components	of	the	force	on	disloca2on	II	per	unit	length	
(bx = b, by = bz = 0):
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Force between parallel edge dislocations. Unit of force Fx is Gb2y/[2π(1 − ν)]. 
Curve A for like dislocations, curve B for unlike dislocations. 

[Hull, Bacon 1993/Cottrell 1953]

Force between parallel edge dislocations



✦ Dislocations motion only in the slip plane  
most important Fx 

✦ For x > 0, Fx < 0 (attractive) if x < y 

✦ For x < 0, Fx > 0 (attractive) if x < -y 

(dislocations of the same sign)

Interaction force between edge dislocations
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Stable positions of edge dislocations
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✦ Screws much easier: attractive for opposite sign, 

repulsive for the same sign 

✦ No forces between parallel screw and edge 

dislocations, as the stress fields are not mixing

Interaction force between screws



✦ Force Fy not in glide plane, no conservative motion 

of dislocation possible 
✦ Motion only possible, if intrinsic point defects can be 

emitted or absorbed 
✦ Vacancy or interstitial mechanism

Climb force

Emission of interstitials by dislocation climb



Chemical force

✦ vice versa: chemical force f  by supersaturation of vacancies 
✦ Dislocation climbs, until equilibrium between f and Fy

✦ No. of vacancies absorbed: bls/Ω   
(l length of dislocation segment, s climb distance, Ω atomic volume) 

✦ Change in the vacancy concentration ó change in the chemical 
potential of vacancies



Summary

✦ Elastic energy of a dislocation ∝ Gb2 

✦ Total energy Eel + Ecore 

✦ Frank’s energy criterion for dislocation reaction:  

✦ Glide force on dislocation σb (per unit length) 

✦ Repulsive and attractive slip forces responsible  
for dislocation patterning 

✦ Interaction between point defects and dislocations  
gives rise to climb
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