Hartmut S. Leipner: Defects in imperfect materials

3.2 Elasticity theory of dislocations

+ Basics of linear elasticity theory
+ Stress field of a straight dislocation
+ Strain energy

+ Forces on dislocations
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Basics of linear elasticity theory
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Stress in the solid

+ Considering a small cubic volume element in a solid, the total
stress state can be described by the forces perpendicular and
parallel to the faces of the cube.

+ On each face, three stresses:

1 normal 6;;, 2 shearo; (i £, 1,] = X, y, 2)

+ All together nine components of the stress




Stress tensor

Stress tensor is symmetrical, o, = g;; (rotational equilibrium).

Magnitude of the individual components depends on the
orientation of the coordinate system.

A special coordinate system can always be found, where
there are only normal stresses,

01 0 0
O — 0 o, 0
0 0 03

Positive normal stress as tension

Hydrostatic pressure is the average normal stress,

1
p= 5(61+62+03)



Strain

+ Generally, the elastic deviation of the shape of the solid can
be expressed as a strain tensor,

gxx g_xy SXZ

Ex &y &

+ ¢, elongations, ¢, shear (i # )

+ Strain tensor also symmetrical

V-V
Vo

= Ex T &y T &4



Stress—strain relationships

Stress as force per unit area of surface; consider
orientation of the surface and direction of the force

Uniaxial tension ¢ = E¢, shear 7 = Gy
Special cases of Hooke’s law o =Ce

Relation between stress and strain tensors

3
Expression of 9 equation like o;; = E Cijki €kl

i’j’k’lzl

C has 34 = 81 components C;;, (4th rank tensor)



Elastic constants

+ In praxi, number of constants is reduced due to symmetry. i
+ For isotropic solids only two parameters (e.g. G and Lamé constant A)

O = 2GE; + A 2 E;i
O,;, — 2G8ZZ -+ 1 E E;i

Oy = 2GE&yy, Oy, =2GEy,;, Oy =2GE,

+ In cubic crystals, three constants are needed.



Elastic moduls

+ Constants used for isotropic solids: Young’s modulus £,
Poisson’s constant v, and bulk modulus K,

~

EF=26014+v) ve—1t  g=_EL
B - 2(1+G) - 3(1—-2v)

+ Poisson’s constant
Elongation in x-direction connected with reduction of cross
section



Strain field of a straight screw dislocation

+ Representation as a cylinder

of elastic material
+ Slit LMNO || z axis, surface

displaced by b

Displacements:
u,=u,=0
b0 b arctany
u, — — — —— -
©2n 2w X

+ Cylinder with radius r,

Volterra screw dislocation

not taken into account:
assumptions of linear
elasticity theory not valid



Straight screw dislocation

SXX =8yy =€ZZ =8xy =8yx =O Oxx =Oyy =GZZ =0xy =ny =O
_ __b y =_isin6 5 -G =_Gb y =_G_bsin8
T dm(x*+yt) 4mor T 2n(x*+y’) 2m v
e =_b X =_icos@ 6 -G =_Gb X =_G_bc056
YT A (x*+yt)  dmor T m(x*+yY) 2w or
Simpler form in cylindrical coordinates: b
€o: =€p =
e r
Using o, =0, cost + o, sind Gb | (the only non-zero
Oy, =0, sinf + g, cost Qo =0 = E components)




Discussion of the strain and stress fields

+ Strain and stress « 1/r, diverge with r — 0

+ Linear elasticity approach not valid at the center of the dislocation
+ Dislocation core with atomistic model

+ Theoretical stress limit reached at r = b

4+ Reasonable core radius <1 nm



Stress field of a straight edge dislocation
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Volterra edge dislocation

0,, =0, =0,=0,=0

Xz zx yz
G __ Gb y(3x* + %)
T 2n(1-v) (X7 + )

Gb  y(x’-y")
Oy = ~ 2 . 232
2n(l-v) (x" +y°)

2 2

6 -G Gb x(x*-y7)

e =2n(1—v)(x2+y2)2

0-zz =V (Oxx +0yy)



Stress field contours of an edge dislocation

Contours of equal stress

about an edge dislocation
[Hirth, Lothe 1992]




Stress field of an edge dislocation

+ Deformation is basically a plane strain.
+ Both dilatational and shear components exist.

+ Largest normal stress g, || Burgers vector

+ Max. compressive stress immediately above y =0 (slip plane)

max. tensile stress immediately below y =0

4+ Pressure on a volume element

_2Gb(+v) y
3 1-v  x*+)?

P



Strain energy of a dislocation

+ Elastic strain energy in theory of elasticity: dE = ldVE Yo,
2 4l

+ Two parts of the total strain energy of a body containing

a dislocation:
E=E. .tE,

Ccore
+ Elastic energy per unit length of a screw:
dE, = %2nrdr(oezaez +04€4)
_Ghdr
duv r

Gb* ".dr Gb* R . :
= T2 = (Total elastic energy per unit length)

E =
° 475;{7/ 2L A




Discussion of the strain energy

+ Strain energy of an edge more complicated to calculate
2
(lower symmetry) E, - Gb" | R
dr(l-v) 7
+ Elastic energy of an edge dislocation higher by about 3/2

than that of a screw

+ E_ depends on r, and R (core radius and cut-off radius).
+ Example: G=4-1010 Nm=2, 7,=1nm, R=1mm, b =0.25 nm

E. = 6 ¢V per unit length of a dislocation

+ R corresponds to crystal dimensions. R = 2/p
+ For many dislocations in a crystal,
superposition of the long-range strain fields



Elastic energy of dislocations

E, = n
dr A (l-v) 7,

rob RF

Elastic energy in a ring cylinder of the thickness dr



Energy of mixed dislocations

+ Superposition of edge and screw parts E;

+ E,=aGh?, witha=05...1.0

4+ Shortest lattice translation vectors

preferred as E; is at min.
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Splitting of a dislocation with b, = 2a

into two dislocations with b, = b; = a,

E, x4a2 E,=E; x 2q2



Franids rule

+ Energy criterion for dislocation reaction

b> +b? >b? Reaction favorable

+ Condition with angle ¢:
/2 < g <m Reaction preferred

0 < ¢ < w2 Dissociation preferred



Elementary process of plastic deformation

The motion of dislocations is the elementary
process of the plastic deformation of crystals.



External forces on dislocations

+ Dislocation separates slipped
region from unslipped one

+ Deformation work may be done
by external force = shift of the

dislocation

Plastic deformation by motion of a dislocation



Definition of force

L

+ Dislocation of length L, swept distance on the slip plane x
+ Applied shear force on the crystal (per length L): F' = ox
+ Work done by the crystal (per length L): W=oxb

+ Definition of a force (per length L) to move the dislocation

in x-direction: work W = force on dislocation x x
+ Fy=o0b



Forces between dislocations

repulsive force if b has the same
sign, attractive if opposite sign

+ More complicated, if slip planes
different

T Ee—
\\

I + Displacement in dislocation I is
y
1 \ ‘ / J \ \ I . Burgers vector b of dislocation I
Slip plane I

T ==




Calculation of the force

Components of the force on dislocation II per unit length
(b, =D, by= b_=0):

F.=0.,b, F,=0,b y .
o Gb*  x(x* =y?) Ty
w1 -v) (22 + v?)?
(1-v)(x"+y%) o

Fo_ G yGx’-y) :
Toon(l-v) (67 +p7) L




Force between parallel edge dislocations

Force between edge dislocations

-0-3 L.

Force between parallel edge dislocations. Unit of force F_is Gh2y/[2n(1 — v)].

Curve A for like dislocations, curve B for unlike dislocations.
[Hull, Bacon 1993/Cottrell 1953]



Interaction force between edge dislocations

+ Dislocations motion only in the slip plane

most important F,
+ Forx>0,F_ <0 (attractive) if x <y
+ Forx<0,F_>0 (attractive) if x < -y

(dislocations of the same sign)



Stable positions of edge dislocations




Interaction force between screws

+ Screws much easier: attractive for opposite sign,

repulsive for the same sign
+ No forces between parallel screw and edge

dislocations, as the stress fields are not mixing



Climb force

+ Force F, not in glide plane, no conservative motion

of dislocation possible

+ Motion only possible, if intrinsic point defects can be
emitted or absorbed

+ Vacancy or interstitial mechanism

Emission of interstitials by dislocation climb



Chemical force

No. of vacancies absorbed: bls/<
(/ length of dislocation segment, s climb distance, € atomic volume)

Change in the vacancy concentration <> change in the chemical
potential of vacancies

( E; +FyQ/b)
c=exp| -

e T
F,Q )

0P ( " bk, T

vice versa: chemical force f by supersaturation of vacancies
Dislocation climbs, until equilibrium between fand F,

bkyg T .
Q2 CO

f_



Summary

Elastic energy of a dislocation « Gb2

Total energy Eei + Ecore

Frank’s energy criterion for dislocation reaction:
bl +b; >b;

Glide force on dislocation ab (per unit length)

Repulsive and attractive slip forces responsible
for dislocation patterning

Interaction between point defects and dislocations
gives rise to climb
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