[1] Alexander H (1994) What information on extended
defects do we obtain from beam-injection methods? Mater Sci Eng B 24:
1-7.
[2] Alexander H, Dietrich S, Hühne M, Kolbe M,
Weber G (1990) EBIC microscopy applied to glide dislocations. phys stat
sol (a) 117: 417-428.
[3] Balk LJ, Kubalek E, Menzel E (1976) Investigations
of as-grown dislocations in GaAs single crystals in the SEM (Cathodoluminescence
and electron beam induced voltage). Scanning Electron Microsc 1976; I:
257-264.
[4] Balk LJ, Menzel E, Kubalek E (1980) Microcharacterization
of semiconductors by cathodoluminescence (CL) and electron beam induced
current (EBIC) techniques. In: Proc. 8th Int. Congress on X-ray Optics
and Microanalysis. Beaman DR, Ogilvie RE, Wittry DB (eds.), Pendell Publ.
Co., Midland. pp. 613-624.
[5] Bechstein V (1995) Temperaturabhängigkeit
des REM-KL-Versetzungskontrastes in III-V-Halbleitern: GaP(n) (Temperature
dependence of SEM-CL dislocation contrast in III-V semiconductors: GaP(n)).
Diploma thesis. Martin-Luther-Universität, Halle.
[6] Casey Jr HC, Sell DD, Wecht KW (1975) Concentration
dependence of the absorption coefficient for n- and p-GaAs
between 1.3 and 1.6 eV. J Appl Phys 46: 250-257.
[7] Chim WK, Chan DSH, Low TS, Phang JCH, Sim KS, Pey
KL (1992) Modelling techniques for the quantification of some electron
beam induced phenomena. Scanning Microsc 6: 961-968.
[8] Christen J, Grundmann M, Bimberg D (1991) Scanning
cathodoluminescence microscopy: a unique approach to atomic-scale characterization
of heterointerfaces and imaging of semiconductor inhomogeneities. J Vac
Sci Technol B 9: 2358-2368.
[9] Czyewski Z, Joy DC (1990) Monte Carlo simulation
of CL and EBIC contrasts for isolated dislocations. Scanning 12:
5-12.
[10] Deng H, Steeds JW (1992) Theoretical studies
of minority carrier concentration profiles and cathodoluminescence intensities
in thin-film materials with different surface recombination velocities
and arbitrary excitation density. Semicond Sci Technol 7: 135-149.
[11] Donolato C (1978/79) On the theory of SEM charge-collection
imaging of localized defects in semiconductors. Optik 52: 19-36.
[12] Donolato C (1979) Spatial resolution of SEM-EBIC
images. Solid-State Electron 22: 797-799.
[13] Donolato C (1983) Evaluation of diffusion lengths
and surface recombination velocities from electron beam induced current
scans. Appl Phys Lett 43: 120-122.
[14] Donolato C (1992) A theoretical study of the
charge collection contrast of localized semiconductor defects with arbitrary
recombination activity. Semicond Sci Technol 7: 37-43.
[15] Donolato C, Bianconi M (1987) Use of the EBIC
contrast profile area for evaluating the recombination strength of dislocations.
phys stat sol (a) 102: K7-11.
[16] Donolato C, Kittler M (1988) Depth profiling
of the minority-carrier diffusion length in intrinsically gettered silicon
by electron-beam-induced current. J Appl Phys 63: 1569-1579.
[17] Eckstein M, Habermeier HU (1991) Numerical analysis
of the temperature dependence of EBIC and CL contrasts. J Physique IV 1:
C6-23-28.
[18] Fiddicke J, Oelgart G (1985) The importance of
the excitation volume for the determination of the minority carrier diffusion
length. phys stat sol (a) 87: 383-389.
[19] Galloway SA, Wilshaw PR, Konkol A (1994) An electron-beam-induced
current study of dislocations in GaAs. Mater Sci Eng B 24: 91-97.
[20] Hergert W (1989) The information radius in electron
beam or light beam probing of semiconductors, phys stat sol (a) 111:
K253-257.
[21] Hergert W, Hildebrandt S, Pasemann L (1987) Theoretical
investigations of combined EBIC, LBIC, CL, and PL experiments. The information
depth of the PL signal. phys stat sol (a) 102: 819-828.
[22] Hergert W, Pasemann L (1984) Theoretical study
of the information depth of the cathodoluminescence signal in semiconductor
materials. phys stat sol (a) 85: 641-648.
[23] Hergert W, Pasemann L, Hildebrandt S (1991) Discussion
of the convergence properties of the perturbation series used in the calculation
of EBIC- and CL-contrasts. J Physique IV 1: C6-45-50.
[24] Hergert W, Reck P, Pasemann L, Schreiber J (1987)
Cathodoluminescence measurements using the scanning electron microscope
for the determination of semiconductor parameters. phys stat sol (a) 101:
611-618.
[25] Herman MA, Bimberg D, Christen J (1991) Heterointerfaces
in quantum wells and epitaxial growth processes: Evaluation by luminescence
techniques. J Appl Phys 70: R1-52.
[26] Hess J, Schreiber J, Hildebrandt S, Labusch R
(1992) EBIC experiments at dislocations in germanium, phys stat sol (b)
172: 225-234.
[27] Hildebrandt S, Hergert W (1990) Unified theoretical
description of the CL, EBIC, PL, and LBIC contrast profile area of an individual
surface-parallel dislocation. phys stat sol (a) 119: 689-699.
[28] Hildebrandt S, Schreiber J, Hergert W (1991)
Recent results in the theoretical description of CL and EBIC defect contrasts.
J. Physique IV 1: C6-39-44.
[29] Hildebrandt S, Schreiber J, Hergert W, Petrov
V I (1988) Determination of the absorption coefficient and the internal
luminescence spectrum of GaAs and GaAs1-xPx
(x = 0.375, 0.78) from beam voltage dependent measurements of cathodoluminescence
spectra in the scanning electron microscope. phys stat sol (a) 110:
283-291.
[30] Hildebrandt S, Uniewski H, Schreiber J, Leipner
HS (1997) Localization of Y luminescence at glide dislocations in cadmium
telluride. J.
Physique 7: 1505-1514.
[31] Holt DB, Napchan E (1994) Quantitation of SEM
EBIC and CL signals using Monte Carlo electron trajectory simulations.
Scanning 16: 78-86.
[32] Holt DB, Napchan E, Lazzarini L, Urchulutegui
M, Salviati G (1994) Quantitative studies of beam-induced defects in III-V
compounds by cathodoluminescence and transmission electron microscopy.
Mater Sci Eng B 24: 130-134.
[33] Holt DB, Napchan E, Norman CE (1989) Calculations
for defect strength determinations. Inst Phys Conf Ser 104: 205-210.
[34] Jakubowicz A (1985) On the theory of electron-beam-induced
current contrast from pointlike defects in semiconductors. J Appl Phys
57: 1194-1199.
[35] Kato T, Nakazawa Y, Matsumoto T (1993) Estimation
of grown layer thickness by cathodoluminescence measurement. Jpn J Appl
Phys 32: 5525-5526.
[36] Kaufmann K, Balk LJ (1995) Numerical simulation
of electron-beam-induced gate currents in a GaAs MESFET. I. Theory and
model. J Phys D 28: 914-921. II. Numerical and experimental results.
ibid. 922-933.
[37] Kittler M, Schröder K-W (1983) Determination
of semiconductor parameters and of the vertical structure of devices by
numerical analysis of energy-dependent EBIC measurements. phys stat sol
(a) 77: 139-151.
[38] Koch F (1987) Quantitative Bestimmung von Halbleiterparametern
mit Hilfe des elektronenstrahlinduzierten Barrierenstromes und der Katodolumineszenzintensität
(Quantitative determination of semiconductor parameters by means of electron
beam induced barrier current and cathodoluminescence intensity). Thesis.
Humboldt-Universität, Berlin.
[39] Koch F, Hergert W, Oelgart G, Puhlmann N (1988)
Determination of semiconductor parameters by electron beam induced current
and cathodoluminescence measurements. phys stat sol (a) 109: 261-272.
[40] Leipner HS, Schreiber J, Uniewski H (1997) Dislocation
luminescence in the compound semiconductor cadmium telluride. Scanning
Microsc, accepted.
[41] Löhnert K, Kubalek E (1984) The cathodoluminescence
contrast formation of localized non-radiative defects in semiconductors.
phys stat sol (a) 83: 307-314.
[42] Luke KL (1994) Choice of a range-energy relationship
for the analysis of electron-beam-induced current line scans. J Appl Phys.
76: 1081-1091.
[43] de Meerschman C, Sieber B, Farvacque J-L, Druelle
Y, Microscale characterisation of epitaxial semiconducting homolayers,
I. Cathodoluminescence, Microsc Microanal Microstruct 3 (1992) 483-499;
II. Electron beam induced current. ibid. 501-516.
[44] Munnix S, Bimberg D (1988) Carrier injection
in semiconductors with position-dependent band structure: electron-beam-induced
current at heterojunctions. J Appl Phys 64: 2505-2514.
[45] Pasemann L (1981) A contribution to the theory
of the EBIC contrast of lattice defects in semiconductors. Ultramicrosc
6: 237-250.
[46] Pasemann L (1991) A contribution to the theory
of beam-induced current characterization of dislocations. J Appl Phys 69:
6387-6393.
[47] Pasemann L (1994) Theory of electron-beam-induced
current and cathodoluminescence imaging of crystal defects: some new results.
Mater Sci Eng B 24: 15-22.
[48] Pasemann L, Blumtritt H, Gleichmann R (1982)
Interpretation of the EBIC contrast of dislocations in silicon. phys stat
sol (a) 70: 197-209.
[49] Pasemann L, Hergert W (1986) A theoretical study
of the determination of the depth of a dislocation by combined use of EBIC
and CL technique. Ultramicrosc 19: 15-22.
[50] Petrov VI (1992) Cathodoluminescence scanning
microscopy. phys stat sol (a) 133: 189-230.
[51] Petrov VI, Gvozdover RS (1991) Spatial resolution
of cathodoluminescence scanning electron microscopy of semiconductors.
Scanning 13: 410-414.
[52] Pey KL, Chan DSH and Phang JCH (1993) A numerical
method for simulating cathodoluminescence contrast from localised defects.
Inst Phys Conf Ser 134: 687-692.
[53] Pey KL, Phang JCH and Chan DSH (1995) Cathodoluminescence
contrast of localized defects. Part I. Numerical model for simulation.
Scanning Microsc 9: 355-666. Part II. Defect investigation. ibid.
367-380.
[54] Phang JCH, Pey KL and Chan DSH (1992) A simulation
model for cathodoluminescence in the scanning electron microscope. IEEE
Trans Electron Devices 39: 782-791.
[55] Puhlmann N, Oelgart G, Gottschalch V, Nemitz
R (1991) Minority carrier recombination and internal quantum yield in GaAs:Sn
by means of EBIC and CL. Semicond Sci Technol 6: 181-187.
[56] Reimer L (1995) Monte Carlo simulation MOCASIM.
Software manual. Prof. Dr. L. Reimer, Alte Schanze 22, D - 48159 Münster,
Germany.
[57] Rossin VV and Sidorov VG (1986) Reabsorption
of recombination radiation in semiconductors with high internal quantum
efficiency. phys stat sol (a) 95: 15-40.
[58] Schönauer W, Schnepf E, Müller H (1985)
The FIDISOL program package. Internal report no. 27/85. Universität
Karlsruhe. Rechenzentrum, Postfach 6980, D - 76049 Karlsruhe, Germany.
[59] Schreiber J, Hergert W (1989) Combined application
of SEM-CL and SEM-EBIC for the investigation of compound semiconductors.
Inst Phys Conf Ser 104: 97-107.
[60] Schreiber J, Hergert W, Hildebrandt S (1991)
Combined application of SEM-CL and SEM-EBIC for the investigation of compound
semiconductors. Appl Surf Sci 50: 181-185.
[61] Schreiber J, Hildebrandt S (1994) Basic dislocation
contrasts in SEM-CL/EBIC on III-V semiconductors. Mater Sci Eng B 24:
115-120.
[62] Schreiber J, Hildebrandt S, Leipner HS (1993)
Studies on carrier recombination at dislocations in compound semiconductors
by combined SEM-CL/EBIC measurements. phys stat sol (a) 138: 705-713.
[63] Schreiber J, Hildebrandt S, Uniewski H, Bechstein
V (1996) Investigation of the low-temperature CL contrasts of dislocations
in compound semiconductors. Mater Sci Eng B 42: 24-31.
[64] Selberherr
S (1984) Analysis and Simulation of Semiconductor Devices, Springer-Verlag,
Berlin. pp. 149-285.
[65] Sieber B, Farvacque JL, Miri A (1993) Cathodoluminescence
evidence of the relative position of As(g) and Ga(g) dislocation-related
energy bands in gallium arsenide. phys stat sol (a) 138: 673-680.
[66] Steckenborn A, Münzel H, Bimberg D (1981)
Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations.
J Lumin 24-25: 351-354.
[67] Stegmann R, Kloth B, Oelgart G (1982) The temperature
dependence of luminescence intensity on GaAs1-xPx:N.
phys stat sol (a) 70: 423-431.
[68] Tajima M, Kawate Y, Toba R, Warashina M, Nakamura
A (1996) Microscopic photoluminescence mapping of Si-doped GaAs around
dislocations at low temperatures. Inst Phys Conf Ser 149: 257-262.
[69] Weber G, Dietrich S, Hühne M, Alexander
H (1989) EBIC investigations of dislocations in GaAs. Inst Phys Conf Ser
100: 749-754.
[70] Werner U, Koch F, Oelgart G (1988) Kilovolt electron
energy loss distribution in Si, J Phys D 21: 116-124.
[71] Wilshaw PR and Booker GR (1985) New results and
an interpretation for SEM EBIC contrast arising from individual dislocations
in silicon. Inst Phys Conf Ser 76: 329-336.
[72] Wosinski T, Zozime A, Rivière A, Vermeulin
C (1994) EBIC investigations of and dislocations in GaAs. phys stat sol
(a) 142: 347-355.
[73] Wu CJ and Wittry DB (1978) Investigation of minority-carrier
diffusion lengths by electron bombardment of Schottky barriers. J Appl
Phys 49: 2827-2836.
[74] Yacobi
BG and Holt DB (1990) Cathodoluminescence of Inorganic Solids. Plenum
Press, New York. pp. 121-229.
[75] Chan DSH, Pey KL and Phang JCH (1993) Semiconductor
parameters extraction using cathodoluminescence in the scanning electron
microscope. IEEE Trans Electron Devices 40: 1417-1425.
[76] Kittler M, Seifert W (1993) On the origin of
EBIC defect contrast in silicon. A reflection on injection and temperature
dependent investigations. phys stat sol (a) 138: 687-693.
[77] Kusanagi S, Sekiguchi T, Sumino K (1995) Energy
states of deformation-induced dislocations in silicon crystals. Mater Sci
Forum 196-201: 1195-1200.