Interdisziplinäres Zentrum für Materialwissenschaften
  Publikationen [suche]   
Organisation
Aktivitäten
Kontakt
Angebote für Studenten
Bereiche im
      Nanotechnikum
Martin-Luther-Universität
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Tel.: +49 345 55 28471
Telefax:+49 345 55 27390 email: info@cmat.uni-halle.de
[Veröffentlichungen] [Graduierungsarbeiten] [Berichte] [Poster]
Abstracts

Gurunath Apte, Alexandros Repanas, Christian Willems, Anas Mujtaba, Christian E. H. Schmelzer, Ashok Raichur, Frank Syrowatka, and Thomas Groth
Effect of Different Crosslinking Strategies on Physical Properties and Biocompatibility of Freestanding Multilayer Films Made of Alginate and Chitosan
Macromol. Biosci 19 (2019),

Freestanding multilayer films prepared by layer-by-layer technique have attracted interest as promising materials for wound dressings. The goal is to fabricate freestanding films using chitosan (CHI) and alginate (ALG) including subsequent crosslinking to improve the mechanical properties of films while maintaining their biocompatibility. Three crosslinking strategies are investigated, namely use of calcium ions for crosslinking ALG, 1-ethyl-3- (-3-dimethylaminopropyl) carbodiimide combined with N-hydroxysuccinimide for crosslinking ALG with CHI, and Genipin for crosslinking chitosan inside the films. Different characteristics, such as surface morphology, wettability, swelling, roughness, and mechanical properties are investigated showing that films became thinner, exhibited rougher surfaces, had lower water uptake, and increased mechanical strength after crosslinking. Changes of wettability are moderate and dependent on the crosslinking method. In vitro cytotoxicity and cell attachment studies with human dermal fibroblasts show that free-standing CHI-ALG films represent a poorly adhesive substratum for fibro-blasts, while studies using incubation of plastic-adherent fibroblast beneath floating films show no signs of cytotoxicity in a time frame of 7 days. Results from cell experiments combined with film characteristics after crosslinking, indicate that crosslinked freestanding films made of ALG and CHI may be interesting candidates for wound dressings.

DOI.10.1002/mabi.201900181


Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.