Interdisziplinäres Zentrum für Materialwissenschaften
  Publikationen [suche]   
Organisation
Aktivitäten
Kontakt
Angebote für Studenten
Bereiche im
      Nanotechnikum
Martin-Luther-Universität
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Tel.: +49 345 55 28471
Telefax:+49 345 55 27390 email: info@cmat.uni-halle.de
[Veröffentlichungen] [Graduierungsarbeiten] [Berichte] [Poster]
Abstracts

Junchao Kong, Bo Wie, Thomas Groth, Zhuming Chen, Lihua Li, Dongning He, Rui Huang, Jiaqi Chu, Mingyan Zhao
Biomineralization improves mechanical and osteogenic properties of multilayer-modified PLGA porous scaffolds
J. Biomed. Mater. Res. 106 (2018),

Poly-(lactide-co-glycolide acid) (PLGA) has been widely investigated as scaffold material for bone tissue engineering owing to its biosafety, biodegradability, and biocompatibility. However, the bioinert surface of PLGA may fail in regulating cellular behavior and directing osteointegration between the scaffold and the host tissue. In this article, oxidized chondroitin sulfate (oCS) and type I collagen (Col I) were assembled onto PLGA surface via layer by layer technique (LbL) as an adhesive coating for the attachment of inorganic minerals. The multilayer-modified PLGA scaffold was mineralized in vitro to ensure the deposition of nanohydroxyapatite (nHAP). It was found that nHAP crystals were more uniformly and firmly attached on the multilayer-modified PLGA as compared with the pure PLGA scaffold, which remarkably improved PLGA surface and mechanical properties. Additionally, in vitro biocompatibility of PLGA scaffold, in terms of bone mesenchymal stem cells (BMSCs) attachment, spreading and proliferation was greatly enhanced by nHAP coating and multilayer deposition. Furthermore, the fabricated composite scaffold also shows the ability to promote the osteogenic differentiation of BMSCs through the up-regulation of osteogenic marker genes. Thus, this novel biomimetic composite scaffold might achieve a desirable therapeutic result for bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2714–2725, 2018.

Keywords: Poly-(lactide-co-glycolide acid) biomineralization layer by layer technique mesenchymal stem cells bone tissue engineering

DOI10.1002/jbm.a.36487


Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.