Interdisziplinäres Zentrum für Materialwissenschaften
  Publikationen [suche]   
Organisation
Aktivitäten
Kontakt
Angebote für Studenten
Bereiche im
      Nanotechnikum
Martin-Luther-Universität
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Tel.: +49 345 55 28471
Telefax:+49 345 55 27390 email: info@cmat.uni-halle.de
[Veröffentlichungen] [Graduierungsarbeiten] [Berichte] [Poster]
Abstracts

Suvendu Sekhar Mondal, Subarna Dey, Ahmed G. Attallah, Reinhard Krause-Rehberg, Christoph Janiakb, Hans-Jürgen Holdt
Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption
Dalton Trans. 46 (2017),

Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate-4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW- and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The “kinetically controlled” MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.

DOI 10.1039/c7dt00350a


Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.