Interdisziplinäres Zentrum für Materialwissenschaften
  Publikationen [suche]   
Organisation
Aktivitäten
Kontakt
Angebote für Studenten
Bereiche im
      Nanotechnikum
Martin-Luther-Universität
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Tel.: +49 345 55 28471
Telefax:+49 345 55 27390 email: info@cmat.uni-halle.de
[Veröffentlichungen] [Graduierungsarbeiten] [Berichte] [Poster]
Abstracts

M. Elsayed, R. Krause-Rehberg, O. Moutanabbir, W. Anwand, S. Richter, C. Hagendorf
Cu diffusion-induced vacancy-like defects in freestanding GaN.
New J. Phys. 13 (2011), 013029

Positron annihilation spectroscopy was employed to elucidate the nature and thermal behavior of defects induced by Cu in freestanding GaN crystals. Cu atoms were intentionally introduced in GaN lattice through thermally activated diffusion from an ultrathin Cu capping layer. During isochronal annealing of the obtained Cu-doped GaN in the temperature range of 450?850 K, vacancy clusters were found to form, grow and finally vanish. Doppler broadening measurements demonstrate the presence of vacancy-like defects across the 600 nm-thick layer below the surface corresponding to the Cu-diffused layer as evidenced by secondary ion mass spectrometry. A more qualitative characterization of these defects was accomplished by positron lifetime measurements. We found that annealing at 450 K triggers the formation of divacancies, whereas further increase of the annealing temperature up to 550 K leads to the formation of large clusters of about 60 vacancies. Our observations suggest that the formation of these vacancy-like defects in bulk GaN is related to the out-diffusion of Cu.

Keywords: annealing; cluster; copper; diffusion; gallium nitride; lifetime; positron annihilation; SIMS; temperature dependence; vacancies
© IOP

Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.