

International conference on

Extended defects in semiconductors, Göttingen 2014

Dislocation clusters in multicrystalline silicon

Daniel Oriwol, <u>Hartmut S. Leipner</u>, Andreas N. Danilewsky, Lamine Sylla, Winfried Seifert, Martin Kittler, Jan Bauer

© All rights reserved 2014

Introduction

Multicrystalline silicon grown by directional solidification is the mainstream in PV industry due to low cost of ownership and high throughput.

Microwave-detected photoconductivity

Wafers

Ingot

Bricks

Dislocation issues in mc Si

Minority carrier lifetime vs etch pit density

Carrier lifetime, photoluminescence and dislocation density

[Tarasov 1999]

[Arafune 2006]

Dislocations and solar-cell efficiency

Etched wafer surface

Typical defect distribution

Change of defect distribution in the ingot

Evolution of dislocations

- Dislocation clusters mainly generated at grain boundaries
- Atomistic source of the spontaneous dislocation generation not known

Grain orientation effect

Light clusters (L)

Dense clusters (D)

Grain orientation $\langle uvw \rangle$

Slip planes in relation to growth direction

- Angle ω between growth direction and slip plane normal important for cluster formation
- (N) High ω for all slip planes or moderate ω for one plane: no clusters, e. g. (100), (511) grains
 - (D) Low ω for several slip planes:

dense clusters, e. g. $\langle 110 \rangle$, $\langle 331 \rangle$, $\langle 531 \rangle$ grains

(L) Moderate ω for several slip planes *or* low ω for one plane: light clusters, *e. g.* (111), (211), (311) grains

Dislocation arrangements


```
EPD ~ 1×10<sup>5</sup> cm<sup>-2</sup>
```


Too low for dislocation pile-ups/subgrain boundaries

TEM of subgrain boundaries

- Dislocation distance h = 5 ... 900 nm
- A preferred alignment dislocation arrangements exist, but not in relation to the orientation of the grains.

White beam X-ray topography (WB-XRT)

Interpretation of WB-XRT contrasts

Splitting of the reflection due to subgrain boundary

Splitting of reflections

D Oriwol *et al*: Acta Mater **61** (2013) 6903

Tilt of subgrains

Growth direction y

Simulation with LauePT

5-5384 7 -1 -5 20 - 22-46 1-35 1-3 22-4 0-26 02-2 13-3 -228 -35 -260-355

Simulation, rotated by 3° about y

Subgrains are tilted about an axis parallel to the growth direction

Relation of tilt and subgrain boundaries

- Tilt = 0.07° (d6) ... 0.3° (d4) \rightarrow dislocation distance h = 800 ... 30 nm
- The increase in dislocation density in growth direction leads to a continuous generation of new subgrain boundaries.

EBIC and X-ray topography

Dark lock-in thermography (DLIT)

Correlation analysis

Conclusions

Evolution of dislocation pattern

- Initial generation, mostly at grain boundaries
- Inhomogeneous dislocation distribution on different scales, $(N) \rightarrow (L)$
- Multiplication, pile-up and restructuring to subgrain boundaries, (D)
- Dense dislocation clusters with dominant influence on solar cell efficiency

Źěkujom se wutšobnje.

References

- K Arafune *et al*: Phys. B **376** (2006) 236.
- L Bragg, JF Nye: Proc Royal Soc Lond Ser A (1947) 474.
- O Breitenstein: Sol En Mater Sol Cells **107** (2012) 381.
- D Oriwol *et al*: Acta Mater **61** (2013) 6903.
- I Tarasov *et al*: Phys. B **273-274** (1999) 549.