Forschergruppenkolloquium Institut für Geowissenschaften, Christian-Albrechts-Universität Kiel

Investigation of dislocations and vacancy clusters by means of positron annihilation

Hartmut S. Leipner

http://www.cmat.uni-halle.de

Overview

- Dislocations in semiconductors core structure
- Dislocation dynamics plastic deformation
- Formation of point defects during plastic deformation
- What we can learn from positron annihilation about defect structures?
- Calculations of vacancy clusters
- Modell of point defect generation

CMAT 🚜

Core structure of dislocations

60° dislocation in the diamond structure, $\boldsymbol{b} = \frac{a}{2}\langle 110 \rangle$. [Shockley 1953]

Not like this!

Dissociation

Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° partial dislocation. There is an intrinsic stacking fault between the two partials. The drawing is along the (110) plane.

Reconstruction

Unreconstructed 30° partial dislocation

Reconstructed 30° partial dislocation

Dislocation defects

Kink pair on a 30° partial dislocation

Analysis of the stress-strain curve

Dislocation velocity

$$v = B \tau_{\text{eff}}^{m} \exp\left(-\frac{U}{k_{B}T}\right)$$

Lower yield stress

$$\tau_{\rm ly} = C \,\dot{\varepsilon}^{1/(2+m)} \exp \left[\frac{U}{(2+m)k_{\rm B}T} \right]$$

	2+m	U/eV	$Q_{ m d}/{ m eV}$	$Q_{ m d}\!/U$
Si	2.3	2.30	3.5	1.52
InSb	3.1	0.96	1.5	1.56
InP	2.9	1.43	2.3	1.61
GaAs	3.6	1.35	2.0	1.48
GaSb	3.0	1.20	1.7	1.42

Point defect density as a function of deformation conditions (i)

Density of vacancies and antisite defects as a function of the strain. Result of measurements by positron annihilation in plastically deformed GaAs. Uniaxial compression in [110] direction at 773 K, strain rate 1×10^{-3} s⁻¹.

Relation between excess vacancy density and strain

$$\rho_{v} = \frac{l_{g} \zeta c_{j}}{l b^{2} m} \epsilon$$

Point defect density as a function of deformation conditions (ii)

Total number of vacancies in the bulk

- (\Box) , vacancies bound at dislocations
- (\bigcirc) , as well as number of Ga_{As} antisites
- (⋄) in plastically deformed GaAs.

Deformation temperature 773 K, strain

3 %, strain rate 7.5×10^{-5} s⁻¹ (*above*),

$$3 \times 10^{-4} \text{ s}^{-1} (below).$$

Positron annihilation

- Positrons may be captured during their diffusion in lattice defects.
- Annihilation rate (reciprocal lifetime) depends on the local electron density distribution at the annihilation site.

hsl - Kiel 2002-11-21

10

Positron capture in defects

Positron potential $V_{+}(r)$ of a neutral and a negatively charged vacancy. The potential of a negatively charged acceptor acting as a shallow positron trap is shown on the right. λ is the annihilation rate (inverse positron lifetime).

Positron lifetime spectrum

Decomposition of experimental positron lifetime spectra:

- Undeformed Czochralski Si: one component, $\tau_{\rm b} = 218~{\rm ps}$
- Plastically deformed Si: (3 %, 1050 K) three components $\tau_1 = 120 \text{ ps (not shown)},$ $\tau_2 = 320 \text{ ps}, \, \tau_3 = 520 \text{ ps}$

12

Trapping model

- Quantitative analysis of positron trapping by a set of rate equations
- > Solution (lifetime spectrum):

$$\sum_{i} \frac{I_{i}}{\tau_{i}} \exp\left(-\frac{t}{\tau_{i}}\right)$$

Trapping rate: $\kappa_{\rm d} = \mu C_{\rm d}$

Average positron lifetime: $\bar{\tau} = \sum_{i} I_{i} \tau_{i}$

Positron lifetimes and capture rates in deformed GaAs

Lifetime components:

 $\succ \tau_2 = \tau_{d3} = (260 \pm 5) \text{ ps}$ corresponds to a defect with the open volume of a monovacancy

$$\tau_3 = \tau_{d2} = (477 \pm 20) \text{ ps}$$

corresponds to a defect with a large open volume (vacancy cluster)

> At low sample temperatures, another positron trap without open volume becomes active (e. g. antisite defects).

$$\tau_{\rm dl} \approx \tau_{\rm b}$$

Plastic deformation of silicon

Average positron lifetime a a function of the sample temperature in lightly P-doped FZ Si deformed in [110] direction. 7 % deformation, 2.1×10^{-5} s⁻¹ strain rate.

15

hsl – Kiel 2002-11-21 CMAT

Vacancy incorporation in dislocations

Incorporation of a vacancy in the core of a 30° partial dislocation as a local transition from glide to shuffle set.

Dislocations as positron traps

Positron potential $V_{+}(x,y)$ of a dislocation. The regular dislocation line is a shallow positron trap, while a bound vacancy acts as a deep trap.

Trapping model in deformed crystals

hsl - Kiel 2002-11-21

18

Calculation of vacancy clusters

- Construction of vacancy clusters and relaxation with a self-consistent charge-density-functional-based tight binding (SCC DFTB) method [Elstner *et al.* 1998]
- ➤ Method allows the modeling of large supercells (512 atoms), which are needed to avoid defect—defect interactions.
- ➤ Different vacancy aggregates were examined in respect of their stability.
- Construction scheme of closed structures with hexagonal rings of vacancies gives clusters of lowest total energy

Structure of some unrelaxed V_n clusters in GaAs

Calculation of the positron lifetime

Calculation of positron lifetimes for various vacancy cluster configurations using the superimposed-atom model of Puska et al. (1989)

Annihilation rate
$$\lambda \propto \int \Gamma n^{-} |\Psi^{+}(\mathbf{r})|^{2} d\mathbf{r}$$

Positron wave function in bulk GaAs (*left*) and in a gallium vacancy (right)

Stability of vacancy clusters and cluster-related positron lifetimes

Energy gained by adding a divacancy to an aggregate of n-2 vacancies in GaAs (*upper part*) and positron lifetimes in vacancy aggregates (*lower part*). *Open/closed symbols*: configuration before/after relaxation.

Results of calculations

- V_{12} in GaAs \triangleright Especially stable structures (n < 18): V_6, V_{10}, V_{14} in Si
- > Vacancy chains are not energetically favored structures
- ➤ The experimentally observed long-lived positron lifetime component may be attributed to V_{12} in GaAs and to V_{14} in Si.
- Magic numbers in silicon n = 4i + 2, i = 1, 2, 3, ...

Cutting of dislocations

Cutting of edge dislocations

Formation of vacancy clusters

Number of point defects

$$C = \frac{1}{V} \frac{\xi_1 \cdot \boldsymbol{u} \times \xi_2}{|\xi_1 \cdot \boldsymbol{u} \times \xi_2|} \boldsymbol{b}_1 \cdot \boldsymbol{u} \times \boldsymbol{b}_2$$

Agglomeration of vacancies as a result of jog dragging at screw dislocations

Superjogs

Formation of edge dipoles and prismatic dislocation loops

Vacancies and interstitials

Secondary reactions lead to antisites:

$$I_{Ga} + V_{As} \rightarrow Ga_{As}$$
 $I_{As} + V_{Ga} \rightarrow As_{Ga}$

$$I_{As} + V_{Ga} \rightarrow As_{Ga}$$

Summary

- The formation of point defects during plastic deformation of semiconductors can be related to dislocation motion.
- ✓ The basic mechanism is the emission of vacancies and interstitials by screw dislocations containing jogs.
- Formation of long rows of vacancies is energetically unfavorable.
- ✓ Stable three-dimensional vacancy agglomerates are formed in a primary process by atomic re-arrangement directly at the climbing jog.
- ☑ Dislocations are combined positron traps with the regular dislocation line representing a shallow positron trap and bound vacancies as deep traps.