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Overview

�

Dislocations in semiconductors – core structure

�

Dislocation dynamics – plastic deformation

�

Formation of point defects during plastic deformation

�

What we can learn from positron annihilation about defect structures?

�

Calculations of vacancy clusters

�

Modell of point defect generation
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60° dislocation in the diamond structure,
[Shockley 1953] 

Core structure of dislocations
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Not like this !
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Dissociation

Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° partial 
dislocation. There is an intrinsic stacking fault between the two partials. The drawing 
is along the (110) plane.
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Reconstruction

Unreconstructed 
30° partial dislocation

Reconstructed 
30° partial dislocation

(111)
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Dislocation defects

Kink pair on a 30° partial dislocation
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Analysis of the stress–strain curve

�

Lower yield stress

�

Dislocation velocity
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Si 2.3 2.30 3.5 1.52
InSb 3.1 0.96 1.5 1.56
InP 2.9 1.43 2.3 1.61
GaAs 3.6 1.35 2.0 1.48
GaSb 3.0 1.20 1.7 1.42
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Point defect density as a function 
of deformation conditions (i)

Density of vacancies and antisite defects 
as a function of the strain. Result of 
measurements by positron annihilation 
in plastically deformed GaAs. Uniaxial 
compression in [110] direction at 773 K, 
strain rate 1×10 3−  s 1− .
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Total number of vacancies in the bulk 

(
�

), vacancies bound at dislocations 

(

�

), as well as number of Ga
As

 antisites 

(

�

) in plastically deformed GaAs. 

Deformation temperature 773 K, strain 

3 %, strain rate 7.5×10 �5 s �1 (above),  

3×10 �4 s �1 (below).

Point defect density as a function 
of deformation conditions (ii)
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Positron annihilation

�

Positrons may be captured during their diffusion in lattice defects.

�

Annihilation rate (reciprocal lifetime) depends on the local electron 
density distribution at the annihilation site.
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Positron capture in defects

�

 �  open volume

�

 � 

�

b

Positron potential V+(r) of a neutral and a negatively charged vacancy. The potential 

of a negatively charged acceptor acting as a shallow positron trap is shown on the 

right. 

�

 is the annihilation rate (inverse positron lifetime).
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Decomposition of experimental 
positron lifetime spectra:

�

Undeformed Czochralski Si: 

one component, �

b = 218 ps

�

Plastically deformed Si: 
(3 %, 1050 K)
three components

�

1 = 120 ps (not shown),

�

2 = 320 ps, �

3 = 520 ps

Positron lifetime spectrum
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Trapping model

�

Quantitative analysis of 

positron trapping by a set of 

rate equations

�
Solution (lifetime spectrum):

Average positron lifetime:
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Positron lifetimes and capture rates
in deformed GaAs

Lifetime components:

$  �

2 = �

d3 = (260 ± 5) ps

corresponds to a defect with the 
open volume of a monovacancy

$  �
3 = �

d2 = (477 ± 20) ps

corresponds to a defect with a 
large open volume (vacancy 
cluster)

$

At low sample temperatures, 
another positron trap without 
open volume becomes active 
(e. g. antisite defects).
 �

d1 ≈ �
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Plastic deformation of silicon
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Average positron lifetime a a function of the sample temperature in lightly P-doped 

FZ Si deformed in [110] direction. 7 % deformation, 2.1×10 5−  s 1−  strain rate.
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Vacancy incorporation in dislocations

SF

[111]
Incorporation of a vacancy in the core 
of a 30° partial dislocation as a local 
transition from glide to shuffle set. 
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Dislocations as positron traps

V

x

y

+

Positron potential V+(x,y) of a dislocation. The regular dislocation 
line is a shallow positron trap, while a bound vacancy acts as a deep 
trap.
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Trapping model in deformed crystals
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Calculation of vacancy clusters

$

Construction of vacancy clusters and relaxation with a self-consistent 
charge-density-functional-based tight binding (SCC DFTB) method 
[Elstner et al. 1998]

$

Method allows the modeling of large supercells (512 atoms), which are 
needed to avoid defect–defect interactions.

$

Different vacancy aggregates were examined in respect of their 
stability.

$

Construction scheme of closed structures with hexagonal rings of 
vacancies gives clusters of lowest total energy

Structure of some unrelaxed Vn clusters in GaAs
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Calculation of the positron lifetime

Calculation of positron lifetimes for various vacancy cluster configurations using 
the superimposed-atom model of Puska et al. (1989)

Annihilation rate

Positron wave function in 
bulk GaAs (left) and in a 
gallium vacancy (right)
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Stability of vacancy clusters
and cluster-related positron lifetimes
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Energy gained by adding a divacancy 
to an aggregate of n – 2 vacancies in 
GaAs (upper part) and positron 
lifetimes in vacancy aggregates 
(lower part). Open/closed symbols: 
configuration before/after relaxation.
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Results of calculations

1 Especially stable structures (n < 18): V12 in GaAs 
V6, V10, V14 in Si

1

Vacancy chains are not energetically favored structures

1

The experimentally observed long-lived positron lifetime 

component may be attributed to V12 in GaAs and to V14 in Si.

1

Magic numbers in silicon n = 4i + 2, i = 1, 2, 3, …
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Cutting of dislocations

b1

b2

b1

b2

Cutting of edge dislocations
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Formation of vacancy clusters

Agglomeration of vacancies as a result of jog dragging 
at screw dislocations

Number of point defects
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Superjogs

Formation of edge dipoles and prismatic dislocation loops

b

b

Jogs
Screw

TEM

Edge
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Vacancies and interstitials

b

Vacancies Interstitials

Secondary reactions lead to antisites:

IGa + VAs 
6 GaAs IAs + VGa 

6 AsGa
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Summary

7

The formation of point defects during plastic deformation of 
semiconductors can be related to dislocation motion.

7

The basic mechanism is the emission of vacancies and 
interstitials by screw dislocations containing jogs.

7

Formation of long rows of vacancies is energetically 
unfavorable.

7

Stable three-dimensional vacancy agglomerates are formed in 
a primary process by atomic re-arrangement directly at the 
climbing jog.

7

Dislocations are combined positron traps with the regular 
dislocation line representing a shallow positron trap and bound 
vacancies as deep traps.


