List of symbols and abbreviations

Lecture Physics of materials, H. S. Leipner

2001-09, last revision 2008-09

а	Slip	\mathbf{B}_0	External magnetic field
a	Fundamental lattice translation	$\boldsymbol{\hat{b}}_1, \boldsymbol{\hat{b}}_2$	Burgers vector
4	vector	B _c	Magnetic coercive field strength
A	Area	$B_{\rm c0}$	Critical magnetic field at $T = 0$ K
A	Constant Prefactor	B_{c1}, B_{c2}	Critical magnetic field strength
A a'	Primitive lattice vector	bcc	Body-centered cubic
a a*		B _{crit}	Critical magnetic field
	Reciprocal lattice vector (First) Bohr radius	BCS	Bardeen-Cooper-Schriefer
a_0 A_0	Cross section	<i>B</i> _{int}	Magnitude of the internal mag- netic field
a_1, a_2, a_3	Basal lattice translation in the hexagonal lattice	BZ	Brillouin zone
a _e	Acceleration in the electric field	С	Speed of light
b	Distance	c	Fundamental lattice translation vector
b	Fundamental lattice translation vector	С	Constant
ĥ	Burgers vector	C	Capacitance
${\mathscr B}$	Constant	С	Stiffness tensor
В	vector of the magnetic induction	c′	Primitive lattice vector
b ′	Primitive lattice vector	c *	Reciprocal lattice vector
b*	Reciprocal lattice vector	<i>c</i> ₀	Starting concentration

C_1, C_2	Constant	E_0	Minimum energy
CCD	Charge-coupled device	E_1	Energy of state 1
Ce	heat capacity due to electrons	E_2	Energy of state 2
c_ℓ	Concentration in the liquid	E_{a}	Activation energy
C_{ijkl}	Component of the stiffness tensor,	E_{A}	Binding energy of acceptor hole
	i, j, k, l = x, y, z	$E_{\rm b}$	Binding energy
c_p	Heat capacity at constant pressure	\mathscr{E}_{b}	Breakdown field strength
$c_{\rm ph}$	Heat capacity due to phonons	Ec	Energy of the conduction band
Cs	Concentration in the solid		edge
C_V	Heat capacity at constant volume	\mathcal{E}_{c}	Coercive field strength
d	Distance	$E_{\rm D}$	Binding energy of donor electron
ã	Piezoelectric coefficient	E_{F}	Fermi energy
D	Density of states	$E_{\mathrm{FA}}, E_{\mathrm{FB}}$	Fermi energy of metal A, B
D_0	Prefactor in the diffusion constant	E_{g}	Band gap
$d_{\rm c}$	Thickness	\mathcal{E}_{H}	Hall field
d _c D _e	Thickness Diffusion length of electrons	Е _Н Е _і	Hall field Ionization energy
De	Diffusion length of electrons	E_{i}	Ionization energy
$D_{\rm e}$ $d_{\rm i}$	Diffusion length of electrons Displacement of ions	$E_{\rm i}$ $E_{\rm kin}$	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n =$
$D_{\rm e}$ $d_{\rm i}$	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic	$E_{ m i}$ $E_{ m kin}$ $\mathscr{E}_{ m loc}$	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$)
$D_{ m e}$ $d_{ m i}$ $D_{ m X}$	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X	$E_{ m i}$ $E_{ m kin}$ $\mathscr{E}_{ m loc}$	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n =$
D_{e} d_{i} D_{X} d_{hkl}	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>)	E_{i} E_{kin} \mathscr{E}_{loc} E_{pn}	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$)
$D_{ m e}$ $d_{ m i}$ $D_{ m X}$ d_{hkl} $d_{ m s}$	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>) Slit width	E_{i} E_{kin} \mathscr{E}_{loc} E_{pn} E_{ph}	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$) Phonon energy
D_e d_i D_X d_{hkl} d_s DOS	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>) Slit width Density of states	E_{i} E_{kin} \mathscr{E}_{loc} E_{pn} E_{ph} E_{pot}	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$) Phonon energy Potential energy
D_e d_i D_X d_{hkl} d_s DOS e	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>) Slit width Density of states Elementary charge	E_{i} E_{kin} \mathcal{E}_{loc} E_{pn} E_{ph} E_{pot} E_{v}	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$) Phonon energy Potential energy Energy of the valence band edge
D_e d_i D_X d_{hkl} d_s DOS e E	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>) Slit width Density of states Elementary charge Energy	E_{i} E_{kin} \mathcal{E}_{loc} E_{pn} E_{ph} E_{pot} E_{v} f	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$) Phonon energy Potential energy Energy of the valence band edge Atom scattering factor
D_e d_i D_X d_{hkl} d_s DOS e E	Diffusion length of electrons Displacement of ions Diffusion constant of the atomic species X Spacing of the lattice planes (<i>hkl</i>) Slit width Density of states Elementary charge Energy Electrical field vector	E_{i} E_{kin} \mathcal{E}_{loc} E_{pn} E_{ph} E_{pot} E_{v} f F	Ionization energy Kinetic energy Local electric field Energy of photon number n ($n = 1, 2, 3,$) Phonon energy Potential energy Energy of the valence band edge Atom scattering factor Degree of freedom

F _{attract}	Attractive force	$\{hkl\}$	Miller indices of a set of crystallo-
$\mathbf{F}_{\mathbf{C}}$	Coulomb force		graphically identical planes
F_{\perp}	Magnitude of the normal force	$h_{\rm max}$	Maximum height
F_{\parallel}	Magnitude of the tangential force	hcp	Hexagonal closed packed
fCu	Atom scattering factor of copper	НОМО	Highest occupied molecular or- bital
FET	Field effect transistor	i	Counting index
fzn	Atom scattering factor of zinc	Ι	Current
f_j	Atom scattering factor of atom j	\widetilde{I}	Intensity
fcc	Face-centered cubic	$\overrightarrow{\mathbf{i}}$	Unit vector in <i>x</i> -direction
\mathbf{F}_{H}	Hall force	I_0	Current at time $t = 0$
\mathbf{F}_{L}	Lorentz force	$ ilde{I}_0$	Primary intensity
$\mathbf{F}_{\mathbf{r}}$	Radial force	$ ilde{I}_{\mathrm{a}}$	Absorbed intensity
F _{rep}	Repulsive force	Ib	Current at the base
g	Gravitational acceleration	<i>I</i> _c	Collector current
$ ilde{G}$	Shear modulus	<i>I</i> _{diff}	Diffusion current
G	Reciprocal lattice vector	<i>I</i> drift	Drift current
\hat{g}	Landé splitting factor	Ie	Emitter current
$ ilde{g}$	Piezoelectric coefficient	Ilight	Photocurrent
\mathbf{G}_0	Reciprocal lattice vector	I _{max}	Maximum current
GMR	Giant magnetoresistance effect	IR	Infrared
h,\hbar	Planck's constant	<i>I</i> _r	Current in the diode under reverse bias
Н	Internal energy	$ ilde{I}_{ m r}$	Reflected intensity
H	Magnetic field vector	$ ilde{I}_{ ext{t}}$	Transmitted intensity
h,k,l	Integer numbers (related to the Miller indices)	j	Integer number, counting index
(hkl)	Miller indices of a crystallo-	J	Nucleation rate
(1111)	graphic plane	Ĵ	Total angular momentum

$J_{ m e}$	Current density	Le	Diffusion length of electrons
J _{het}	Heterogeneous nucleation rate	LED	Light-emitting diode
$\overrightarrow{\mathbf{j}}$	Unit vector in y-direction	$L_{ m g}$	Grain size
$\mathbf{j}_1, \mathbf{j}_2$	Flux	$L_{\rm tot}$	Total length
j x	Flux of atomic species X	LUMO	Lowest unoccupied molecular or- bital
k	Counting index	т	Mass
k	Wave vector	М	Madelung constant
Κ	Number of components	Μ	Magnetization
K	Wave vector of lattice vibrations	m_1, m_2	Mass
Ñ	Bulk modulus	m _e	Electron rest mass
→ k	Unit vector in <i>z</i> -direction	$m_{\rm e}^*$	Effective mass of the electron
\mathbf{k}_0	Wave vector of the incident wave	$m_{ m H}$	Mass of the hydrogen atom
$\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3$	Wave vector	$m_{ m h}^{*}$	Effective mass of the hole
k _B	Boltzmann constant	m_J	Magnetic moment of the atom
k _{max}	Maximum wave vector	m_l	Orbital magnetic quantum number
\mathbf{k}'_{\max}	Maximum wave vector of the	m_n	Mass of the <i>n</i> th atom
	diffracted beam	\mathbf{m}_{m}	Magnetic dipole moment
k _{min}	Minimum wave vector	MOS	Metal-oxide-semiconductor
\mathbf{K}_{\min}	Minimum wave vector of lattice vibrations	MOSFET	Metal–oxide–semiconductor field effect transistor
\mathbf{k}'_{\min}	Minimum wave vector of the diffracted beam	<i>M</i> _r	Magnitude of the remanent mag- netization
L	Length	m _S	Schmid factor
l	Orbital quantum number	M _s	Magnitude of the saturation mag-
l	Liquid		netization
Ĺ	Total orbital momentum	m _s	Spin magnetic quantum number
l_0, l_1, l_2	Length	n	Counting number; order of diffraction; main quantum num-
l _d	Dislocation line length		ber

Ν	Number of atoms in the lattice	р	Pressure
ĥ	Refraction index	р	Momentum
n_1, n_2, n_3	Counting number	Р	Number of Phases
N _A	Acceptor density	\tilde{p}	Probability
\mathcal{N}_{A}	Avogadro constant	P	Polarization
n _C	Number of Cooper pairs	$\boldsymbol{\mathscr{P}}_{\mathrm{a}}$	Dipole moment of one atom
N _c	Number of atoms in the corners of	$p_{ m h}$	Number of holes
	the unit cell	$\boldsymbol{\mathscr{P}}_{\mathrm{i}}$	Ionic polarization
N _{crit}	Number of nuclei with a critical radius	$\boldsymbol{\mathscr{P}}_{\mathrm{m}}$	Polarization of 1 mol
N _d	Number of dislocations	\mathcal{P}_{r}	Magnitude of the remanent polar- ization
N _D	Donor density	$\mathcal{P}_{\rm s}$	Magnitude of the saturation polar-
n _e	Number of electrons per unit vol-	a	ization
	ume	$\boldsymbol{\mathscr{P}}_{\mathrm{tot}}$	Total polarization
Ne	Number of atoms at the edges of the unit cell	q	Charge
N.	Number of atoms at the faces of	QHE	Quantum Hall effect
$N_{ m f}$	the unit cell	$q_{ m i}$	Ionic charge
ni	Intrinsic carrier density	r	Radius
N_{i}	Number of atoms in the interior of	r	Position vector
	the unit cell	R	Gas constant
\hat{n}_i	Refraction index of the material i ,	R	Lattice vector
<i>.</i> .	<i>i</i> = 1,2	\mathscr{R}	Resistance
$\langle n_i \rangle$	Average number of phonons in the vibrational state <i>i</i>	r	Constant
$N_{ m uc}$	Number of lattice points in the	<i>Ñ</i>	Reflectivity
	unit cell	<i>r</i> _	Radius of the anion
$N_{ m v}$	Number of vacancies in the lattice	r_+	Radius of the cation
NC	Normal conductor	R_{∞}	Rydberg constant
NN	Nearest neighbor	r_0	Equilibrium distance

r_1	First Bohr radius	T_0	Period
$r_{\rm a}, r_{\rm b}$	Nonequilibrium distance	T_1, T_2	Temperature
<i>r</i> _f	Radius of an atom in the fcc struc-	t_1, t_2, t_3	Time
-	ture	T _b	Boiling temperature
R _H	Hall constant	T _c	Jump temperature
r _i	Radius of an atom in an interstitial position	Te	Characteristic temperature of heat capacity of electrons
\mathbf{r}_{j}	Position of atom j with respect to a lattice point	TEM	Transmission electron microscopy
r _n	Radius of the nucleus	<i>T</i> _m	Melting temperature
$r_{\rm n}^*$	Critical radius of the nucleus	и	Elongation
RT	Room temperature	û	Maximum elongation
S	Scaling factor	<i>u</i> _n	Elongation of the <i>n</i> th atom
S	Solid	\hat{u}_n	Maximum elongation of the <i>n</i> th atom
S	Direction of the energy flow of a wave	U	Voltage
S	Entropy	U_0	Threshold voltage
$ ilde{S}$	Structure factor	$U_{\rm s}$	Internal energy of a solid
Ŝ	Total spin momentum	$U_{\rm d}$	Diffusion voltage
\mathbf{s}_0	Direction of the energy flow of the	[<i>uvw</i>]	Crystallographic direction
sc	incident wave Simple cubic	$\langle uvw \rangle$	Crystallographic set of crystallo- graphically identical directions
SC	Superconductor	υ	Velocity
SCR	Space charge region	V	Volume
SQID	Superconducting quantum inter-	V_0	Starting volume
	ference device	$\boldsymbol{v}_{1,}\boldsymbol{v}_{2}$	Velocity
t	Time	$\overline{\upsilon^2}$	Magnitude og the mean square ve-
Т	Absolute temperature		locity
T^*	Critical nucleation temperature	V _c	Volume of the unit cell

$\bar{\upsilon}_{\mathscr{E}}$	Magnitude of the drift velocity	â	Linear expansion coefficient
$\upsilon_{\rm F}$	Speed of electrons at the Fermi	ã	Absorption coefficient
ν _g	edge Group velocity	$ ilde{lpha}_0$	Prefactor in the absorption coefficient
VIS	Visible light	$ ilde{lpha}_{ m a}$	Absorption coefficient due to
υ_l	Speed of sound of longitudinal waves	$ ilde{lpha}_{ m e}$	phonon absorption Absorption coefficient due to
Vm	Molar volume		phonon emission
\boldsymbol{v}_{\max}	Maximum velocity	$lpha_{ m p}$	Polarizability
$V_{n\mathbf{G}}$	Fourier coefficient of the lattice	β	Angle
	potential, $n = 1, 2, 3$	$\beta_{\rm c}$	Current gain
$V_{\mathbf{R}}$	Lattice potential	γ	Angle
$\upsilon_{\rm s}$	Speed of sound	$\hat{\gamma}$	Volume expansion coefficient
Vs	Volume of a sphere	γo	Specific surface energy
υ_t	Thermal speed	γs	Spring constant
W	Width	ΔE	Uncertainty in the energy, differ-
W _{scr}	Width of the space-charge region		ence in energy
$W_{ m v}$	Vacancy formation energy	$\Delta E_{\rm c}$	Change in the position of the con- duction band edge
x	Coordinate	$\Delta E_{ m v}$	Change in the position of the va-
x_j	Coordinate of atom j with respect to a lattice point	·	lence band edge
	Coordinate	ΔF	Change in the free energy
У		ΔG	Change in the free enthalpy
Уj	Coordinate of atom <i>j</i> with respect to a lattice point	ΔG_{a}	Adsorption energy
Z.	Coordinate	$\Delta G_{ m d}$	Diffusion energy in the adsorption
<i>Z</i> 0	Penetration depth		layer
Zj	Coordinate of atom <i>j</i> with respect to a lattice point	$\Delta G^*_{ m het}$ $\Delta G^*_{ m n}$	Heterogeneous nucleation energy Nucleation work
α	Angle	ΔH	Melting heat
ũ	1 mgic		moning near

$\Delta I_{ m b}$	Change in the current at the tran-	\mathcal{E}_{p}	Plastic strain
	sistor base	\mathcal{E}_{r}	Dielectric constant
$\Delta I_{\rm c}$	Change in the collector current	$\boldsymbol{\varepsilon}_{\mathrm{t}}$	True strain
$\Delta \mathbf{k}$	Change in the wave vector	x	Electric susceptibility
Δl	Change in the length	χc	Phase function of Cooper pairs
$\Delta n_{\rm e}$	Excess electron density	χm	Magnetic susceptibility
Δp	Uncertainty in the momentum	ĸ	Distribution coefficient
$\Delta p_{ m h}$	Excess hole density	v	Frequency
ΔS	Change in entropy		
$\Delta S_{ m v}$	Gain in entropy by vacancy for-	Ũ	Poisson's constant
	mation	v_0	Threshold frequency
Δt	Uncertainty in the time	λ	Wavelength
ΔT	Supercooling	Λ	Thermal conductivity
ΔV	Volume element	$\Lambda_{ m e}$	Thermal conductivity of electrons
Δx	Distance	$ar{\lambda}_{ m ph}$	Mean free path of phonons
Δy	Uncertainty in the position	$arLambda_{ m ph}$	Thermal conductivity due to
$\Delta \chi_{ m C}$	Change in the phase function of	_	phonons
	Cooper pairs	$ar{\lambda}$	Mean free path
$\Delta ho_{ m X}$	Change in the density of the atomic species X	$ ilde{\lambda}$	Lamé coefficient
ε	Strain	$\lambda_{ m min}$	Minimum wavelength
ε	Strain tensor	$\lambda_{ m s}$	Short wavelength limit
ϵ_0	Dielectricity constant of the vac-	μ	Permeability
0	uum	μ_0	Permeability of the vacuum
\mathcal{E}_{B}	Failure strain	$\mu_{ m B}$	Bohr magneton
<i>E</i> e	Elastic strain	$\mu_{ m e}$	Mobility of electrons
ϵ_{ij}	Component of the strain tensor,	$\mu_{ m h}$	Mobility of holes
	i, j = x, y, z	μ_l	Orbital magnetic moment
\mathcal{E}_{opt}	Dielectric constant at optical fre- quencies	$\mu_{ m s}$	Spin magnetic moment

Φ	Workfunction	$ ho_{ m m}$	Mass density
ϕ	Relative nucleation energy	$ ho_{ m X}$	Density of the atomic species X
$arPhi_0$	Quantum of the magnetic flux	σ	Stress
${\pmb \Phi}_{\!\rm A}, {\pmb \Phi}_{\!\rm B}$	Workfunction of metal A, B	σ	Stress tensor
$\Phi_{ m c}$	Contact potential	Σ	Strength-to-weight ratio
$arPsi_{ m m}$	Magnetic flux	$\sigma_{0.2\%}$	0.2 % offset yield stress
θ	Angle	$\sigma_1, \sigma_2, \sigma_3$	Normal stress
$\theta_{\rm C}$	Curie temperature	$\sigma_{\rm A}$	Anelasticity limit of the stress
$ heta_{ m D}$	Debye temperature	$\sigma_{\rm B}$	Failure stress
$ heta_{ m h}$	Hardening coefficient	$\sigma_{\rm e}$	conductivity
Θ	Incident angle	$\sigma_{\rm E}$	Elasticity limit of the stress
θ	Tilt angle	$\sigma_{ m F}$	Fracture stress
$\Theta_{ m B}$	Bragg angle	σ_{ij}	Component of the stress tensor, $i, j = x, y, z$
Ψ	Wave function	$\sigma_{ m H}$	Proportionality limit of the stress
Ψ	Angle between the normal of the slip plane and the direction of the	σ_{K}	Maximum stress at the tip
	external force	$\sigma_{ m pile}$	Pile-up stress
ρ	Dislocation density	$\sigma_{ m S}$	Upper yield stress
$ ho_0$	Starting density	$\sigma_{ m S}'$	Lower yield stress
$oldsymbol{ ho}_1, oldsymbol{ ho}_2$	Density	σ_{t}	True stress
$ ho_{ m d}$	Resistivity due to scattering at de-	$\sigma_{ m theo}$	Theoretical breaking stress
	fects	τ	Shear stress
$ ho_{ m e}$	Resistivity	$ au_{ m c}$	Critical shear stress
$ ho_{ m f}$	Final density	$ au_{ m d}$	Relaxation time of scattering at
$oldsymbol{ ho}_\ell$	Density of the liquid		lattice defects
$ ho_{ m ph}$	Resistivity due to phonon scatter-	$ au_{ m max}$	Maximum shear stress
$ ho_{ m H}$	ing Hall resistivity	$ au_{ m ph}$	Relaxation time of phonon scatter- ing

$ au_{ m r}$	Relaxation time
φ	Phase angle
ω	Angular frequency
ω _c	Cyclotron frequency
Ω	Angular frequency of lattice vibrations
$\hat{\Omega}$	Mean angular frequency of lattice vibrations
ω_0	Angular frequency of the incident wave
$arOmega_{ m ak}$	Angular frequency of acoustical vibrations
$arOmega_{ m D}$	Debye frequency
$arOmega_{ m opt}$	Angular frequency of optical vibrations
ξ	Integration variable
ξ	Dislocation direction
Ê	Coherence length